
- Previous Article
- CPAA Home
- This Issue
-
Next Article
Specified homogenization of a discrete traffic model leading to an effective junction condition
Local inversion of a class of piecewise regular maps
Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Via Santa Marta 3, 50139 Firenze, Italy |
This paper provides sufficient conditions for any map L, that is strongly piecewise linear relatively to a decomposition of $\mathbb{R}^k$ in admissible cones, to be invertible. Namely, via a degree theory argument, we show that when there are at most four convex pieces (or three pieces with at most a non convex one), the map is invertible. Examples show that the result cannot be plainly extended to a greater number of pieces. Our result is obtained by studying the structure of strongly piecewise linear maps. We then extend the results to the PC1 case.
References:
[1] |
P. Benevieri, M. Furi, M. P. Pera and M. Spadini, An Introduction to Topological Degree in Euclidean Spaces, Technical Report n. 42, Gennaio 2003, Università di Firenze, Dipartimento di Matematica Applicata, 2003. |
[2] |
F. E. Browder,
Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 1-39.
|
[3] |
S. A. Burden, S. S. Sastry, D. E. Koditschek and S. Revzen,
Event-selected vector field discontinuities yield piecewise-differentiable flows, SIAM J. Appl. Dyn. Syst., 15 (2016), 1227-1267.
|
[4] |
F. H. Clarke,
On the inverse function theorem, Pacific J. Mathematics, 64 (1976), 97-102.
|
[5] |
F. H. Clarke,
Optimization And Nonsmooth Analysis Unrev. reprinting of the orig., publ. 1983 by Wiley, Montréal: Centre de Recherches Mathématiques, Université de Montréal, 1989. |
[6] |
K. Deimling.
Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. |
[7] |
L. Kuntz and S. Scholtes,
Structural analysis of nonsmooth mappings, inverse functions and metric projections, Journal of Mathematical Analysis and Applications, 188 (1994), 346-386.
|
[8] |
N. G. Lloyd,
Degree Theory Cambridge Tracts in Math. 73, Cambridge University Press, Cambridge, 1978. |
[9] |
J. Milnor,
Topology from The Differentiable Viewpoint , The University Press of Virginia, 1965. |
[10] |
J. S. Pang and D. Ralph,
Piecewise smoothness, local invertibility, and parametric analysis of normal maps, Mathematics of Operations Research, 21 (1996), 401-426.
|
[11] |
Sufficient optimality conditions for a bang-bang trajectory in a
Bolza problem. In, Mathematical Control Theory and Finance, (eds. A. Sarychev, A. Shiryaev, M. Guerra, and M. do Rosário Grossinho), Springer, Berlin Heidelberg, (2008), 337-357. |
[12] |
L. Poggiolini and M. Spadini, Strong local optimality for a bang-bang trajectory in a Mayer problem,
SIAM Journal on Control and Optimization 49 (2011), 140-161, |
[13] |
L. Poggiolini and M. Spadini,
Local inversion of planar maps with nice nondifferentiability structure, Adv. Nonlin. Studies, 13 (2013), 411-430.
|
[14] |
L. Poggiolini and M. Spadini,
Bang-bang trajectories with a double switching time in the minimum time problem, ESAIM: Control Optimization and Calculus of Variations, 22 (2016), 688-709.
|
[15] |
E. Rosset, Topological degree in $\mathbb{R}^n$, Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics, 20 (1988), 319-329. Available from: http://hdl.handle.net/10077/4865. |
[16] |
S. Scholtes,
Introduction to Piecewise Differentiable Equations, Springer briefs in optimization. Springer, New York, 2012. |
show all references
References:
[1] |
P. Benevieri, M. Furi, M. P. Pera and M. Spadini, An Introduction to Topological Degree in Euclidean Spaces, Technical Report n. 42, Gennaio 2003, Università di Firenze, Dipartimento di Matematica Applicata, 2003. |
[2] |
F. E. Browder,
Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 1-39.
|
[3] |
S. A. Burden, S. S. Sastry, D. E. Koditschek and S. Revzen,
Event-selected vector field discontinuities yield piecewise-differentiable flows, SIAM J. Appl. Dyn. Syst., 15 (2016), 1227-1267.
|
[4] |
F. H. Clarke,
On the inverse function theorem, Pacific J. Mathematics, 64 (1976), 97-102.
|
[5] |
F. H. Clarke,
Optimization And Nonsmooth Analysis Unrev. reprinting of the orig., publ. 1983 by Wiley, Montréal: Centre de Recherches Mathématiques, Université de Montréal, 1989. |
[6] |
K. Deimling.
Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. |
[7] |
L. Kuntz and S. Scholtes,
Structural analysis of nonsmooth mappings, inverse functions and metric projections, Journal of Mathematical Analysis and Applications, 188 (1994), 346-386.
|
[8] |
N. G. Lloyd,
Degree Theory Cambridge Tracts in Math. 73, Cambridge University Press, Cambridge, 1978. |
[9] |
J. Milnor,
Topology from The Differentiable Viewpoint , The University Press of Virginia, 1965. |
[10] |
J. S. Pang and D. Ralph,
Piecewise smoothness, local invertibility, and parametric analysis of normal maps, Mathematics of Operations Research, 21 (1996), 401-426.
|
[11] |
Sufficient optimality conditions for a bang-bang trajectory in a
Bolza problem. In, Mathematical Control Theory and Finance, (eds. A. Sarychev, A. Shiryaev, M. Guerra, and M. do Rosário Grossinho), Springer, Berlin Heidelberg, (2008), 337-357. |
[12] |
L. Poggiolini and M. Spadini, Strong local optimality for a bang-bang trajectory in a Mayer problem,
SIAM Journal on Control and Optimization 49 (2011), 140-161, |
[13] |
L. Poggiolini and M. Spadini,
Local inversion of planar maps with nice nondifferentiability structure, Adv. Nonlin. Studies, 13 (2013), 411-430.
|
[14] |
L. Poggiolini and M. Spadini,
Bang-bang trajectories with a double switching time in the minimum time problem, ESAIM: Control Optimization and Calculus of Variations, 22 (2016), 688-709.
|
[15] |
E. Rosset, Topological degree in $\mathbb{R}^n$, Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics, 20 (1988), 319-329. Available from: http://hdl.handle.net/10077/4865. |
[16] |
S. Scholtes,
Introduction to Piecewise Differentiable Equations, Springer briefs in optimization. Springer, New York, 2012. |





[1] |
Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533 |
[2] |
Viviane Baladi, Sébastien Gouëzel. Banach spaces for piecewise cone-hyperbolic maps. Journal of Modern Dynamics, 2010, 4 (1) : 91-137. doi: 10.3934/jmd.2010.4.91 |
[3] |
Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685 |
[4] |
Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105 |
[5] |
Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753 |
[6] |
Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451 |
[7] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[8] |
Magnus Aspenberg, Viviane Baladi, Juho Leppänen, Tomas Persson. On the fractional susceptibility function of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 679-706. doi: 10.3934/dcds.2021133 |
[9] |
Lluís Alsedà, Sylvie Ruette. On the set of periods of sigma maps of degree 1. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4683-4734. doi: 10.3934/dcds.2015.35.4683 |
[10] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[11] |
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040 |
[12] |
Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881 |
[13] |
Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739 |
[14] |
Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877 |
[15] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[16] |
Nigel P. Byott, Mark Holland, Yiwei Zhang. On the mixing properties of piecewise expanding maps under composition with permutations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3365-3390. doi: 10.3934/dcds.2013.33.3365 |
[17] |
Peyman Eslami. Inducing schemes for multi-dimensional piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 353-368. doi: 10.3934/dcds.2021120 |
[18] |
Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843 |
[19] |
Rodrigo P. Pacheco, Rafael O. Ruggiero. On C1, β density of metrics without invariant graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 247-261. doi: 10.3934/dcds.2018012 |
[20] |
Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge. On the local C1, α solution of ideal magneto-hydrodynamical equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2103-2113. doi: 10.3934/dcds.2017090 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]