\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we consider the multiplicity and concentration behavior of positive solutions for the following fractional nonlinear Schrödinger equation

    $\left\{ \begin{align} &{{\varepsilon }^{2s}}{{\left( -\Delta \right)}^{s}}u+V\left( x \right)u = f\left( u \right)\ \ \ \ \ \ x\in {{\mathbb{R}}^{N}}, \\ &u\in {{H}^{s}}\left( {{\mathbb{R}}^{N}} \right)\ \ \ \ \ \ \ \ u\left( x \right)>0, \\ \end{align} \right.$

    where $\varepsilon$ is a positive parameter, $(-Δ)^{s}$ is the fractional Laplacian, $s ∈ (0,1)$ and $N> 2s$. Suppose that the potential $V(x) ∈\mathcal{C}(\mathbb{R}^{N})$ satisfies $\text{inf}_{\mathbb{R}^{N}} V(x)>0$, and there exist $k$ points $x^{j} ∈ \mathbb{R}^{N}$ such that for each $j = 1,···,k$, $V(x^{j})$ are strict global minimum. When $f$ is subcritical, we prove that the problem has at least $k$ positive solutions for $\varepsilon>0$ small. Moreover, we establish the concentration property of the solutions as $\varepsilon$ tends to zero.

    Mathematics Subject Classification: Primary: 35A15, 35J60; Secondary: 35B38.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. Bucur and E. Valdinoci, Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, vol. 20, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016.
    [2] K-C Chang, Methods in nonlinear analysis, Springer-verlag Berlin Heidelberg, 2005.
    [3] D. Cao and E. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $ \mathbb{R}^{N} $, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.
    [4] G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations, 17 (2003), 257-281.  doi: 10.1007/s00526-002-0169-6.
    [5] S. DipierroM. MedinaI. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $ \mathbb{R}^{N} $, Manuscripta Math., 153 (2017), 183-230.  doi: 10.1007/s00229-016-0878-3.
    [6] J. DávilaM. del PinoS. Dipierro and E. Valdinoci, Concentration phenomena for nonlocal equtions with Dirichlet datum, Anal. PDE., 8 (2015), 1165-1235.  doi: 10.2140/apde.2015.8.1165.
    [7] S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $ \mathbb{R}^{N}$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, 2017.
    [8] E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [9] S. DipierroG. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche, 68 (2013), 201-216.  doi: 10.4418/2013.68.1.15.
    [10] J. DávilaM. Del Pino and J. C. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.
    [11] M. M. FallF. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961.  doi: 10.1088/0951-7715/28/6/1937.
    [12] P. FelmerA. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect A., 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.
    [13] X. He and W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differential Equations, (2016), 55-91.  doi: 10.1007/s00526-016-1045-0.
    [14] N. Laskin, Fractional Schrödinger equation, Phy. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.
    [15] P. L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact case, Part Ⅱ, Ann. Inst. H. Poincaré Analy. Non linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30422-X.
    [16] R. Pabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew Math Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.
    [17] S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $ \mathbb{R}^{N} $, J. Math. Phys., 54 (2013), 031501. doi: 10.1063/1.4793990.
    [18] G. Tarantello, On nonhomogenous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 9 (1992), 281-304.  doi: 10.1016/S0294-1449(16)30238-4.
    [19] M. Willem, Minimax Theorem, Birkhäuser, Boston, 1996.
  • 加载中
SHARE

Article Metrics

HTML views(510) PDF downloads(291) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return