November  2018, 17(6): 2283-2307. doi: 10.3934/cpaa.2018109

On pressure stabilization method for nonstationary Navier-Stokes equations

1. 

Department of Mathematics, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan

2. 

Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan

* Corresponding author

Received  May 2017 Revised  January 2018 Published  June 2018

Fund Project: The first author was partially supproted by JSPS Grant-in-aid for Scientific Research (C) #15K04946.

In this paper, we consider the nonstationary Navier-Stokes equations approximated by the pressure stabilization method. We can obtain the local in time existence theorem for the approximated Navier-Stokes equations. Moreover we can obtain the error estimate between the solution to the usual Navier-Stokes equations and the Navier-Stokes equations approximated by the pressure stabilization method.

Citation: Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109
References:
[1]

F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in W. Hackbush, editor, Efficient Solutions of Elliptic Systems, Note on Numerical Fluid Mechanics, Braunschweig, 10 1984.  Google Scholar

[2]

A. P. Calderon, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. in Pure Math, 4 (1961), 33-49.   Google Scholar

[3]

R. Denk, M. Hieber and J. Prüss, $ \mathcal{R} $-boundedness Fourier multipliers and problems of elliptic and parabolic type, Memories of the American Mathematical Society, 788 (2003).  Google Scholar

[4]

Y. Enomoto and Y. Shibata, On the $ \mathcal{R} $-sectoriality and the initial boundary value problem for the viscous compressible fluid flow, Funkcialaj Ekvacioj, (2013), 441-505.   Google Scholar

[5]

Y. EnomotoL.v. Below and Y. Shibata, On some free boundary problem for a compressible barotropic viscous fluid flow, Ann Univ. Ferrara, 60 (2014), 55-89.   Google Scholar

[6]

G. P. Galdi, An Introduction to The Mathematical Theory of The Navier-Stokes Equations, Vol. Ⅰ: Linear Steady Problems, Vol. Ⅱ: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, Springer Verlag New York, 38, 39 (1994), 2nd edition (1998).  Google Scholar

[7]

S. A. Nazarov and M. Specovius-Neugebauer, Optimal results for the Brezzi-Pitkäranta approximation of viscous flow problems, Differential and Integral Equations, 17 (2004), 1359-1394.   Google Scholar

[8]

A. Prohl, Projection and Quasi-Compressiblility Methods for Solving The Incompressible Navier-Stokes Equations, Advances in Numerical Mathematics, 1997.  Google Scholar

[9]

Y. Shibata, Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain, Journal of Mathematical Fluid Mechanics, (2013), 1-40.   Google Scholar

[10]

Y. Shibata and T. Kubo, (Japanease) [Nonlinear partial differential equations] Asakura Shoten, 2012. Google Scholar

[11]

Y. Shibata and S. Shimizu, On the maximal $ L_p-L_q $ regularity of the Stokes problem with first order boundary condition: model problems, The Mathematical Society of Japan, 64 (2012), 561-626.   Google Scholar

[12]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $ L_p $-regularity, Math.Ann., 319 (2001), 735-758.   Google Scholar

show all references

References:
[1]

F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in W. Hackbush, editor, Efficient Solutions of Elliptic Systems, Note on Numerical Fluid Mechanics, Braunschweig, 10 1984.  Google Scholar

[2]

A. P. Calderon, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. in Pure Math, 4 (1961), 33-49.   Google Scholar

[3]

R. Denk, M. Hieber and J. Prüss, $ \mathcal{R} $-boundedness Fourier multipliers and problems of elliptic and parabolic type, Memories of the American Mathematical Society, 788 (2003).  Google Scholar

[4]

Y. Enomoto and Y. Shibata, On the $ \mathcal{R} $-sectoriality and the initial boundary value problem for the viscous compressible fluid flow, Funkcialaj Ekvacioj, (2013), 441-505.   Google Scholar

[5]

Y. EnomotoL.v. Below and Y. Shibata, On some free boundary problem for a compressible barotropic viscous fluid flow, Ann Univ. Ferrara, 60 (2014), 55-89.   Google Scholar

[6]

G. P. Galdi, An Introduction to The Mathematical Theory of The Navier-Stokes Equations, Vol. Ⅰ: Linear Steady Problems, Vol. Ⅱ: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, Springer Verlag New York, 38, 39 (1994), 2nd edition (1998).  Google Scholar

[7]

S. A. Nazarov and M. Specovius-Neugebauer, Optimal results for the Brezzi-Pitkäranta approximation of viscous flow problems, Differential and Integral Equations, 17 (2004), 1359-1394.   Google Scholar

[8]

A. Prohl, Projection and Quasi-Compressiblility Methods for Solving The Incompressible Navier-Stokes Equations, Advances in Numerical Mathematics, 1997.  Google Scholar

[9]

Y. Shibata, Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain, Journal of Mathematical Fluid Mechanics, (2013), 1-40.   Google Scholar

[10]

Y. Shibata and T. Kubo, (Japanease) [Nonlinear partial differential equations] Asakura Shoten, 2012. Google Scholar

[11]

Y. Shibata and S. Shimizu, On the maximal $ L_p-L_q $ regularity of the Stokes problem with first order boundary condition: model problems, The Mathematical Society of Japan, 64 (2012), 561-626.   Google Scholar

[12]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $ L_p $-regularity, Math.Ann., 319 (2001), 735-758.   Google Scholar

[1]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[2]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, 2021, 29 (3) : 2445-2456. doi: 10.3934/era.2020123

[3]

Imed Bachar, Habib Mâagli. Singular solutions of a nonlinear equation in a punctured domain of $\mathbb{R}^{2}$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 171-188. doi: 10.3934/dcdss.2019012

[4]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[5]

Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116

[6]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[7]

Yang Liu, Chunyou Sun. Inviscid limit for the damped generalized incompressible Navier-Stokes equations on $ \mathbb{T}^2 $. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021124

[8]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[9]

Guochun Wu, Han Wang, Yinghui Zhang. Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $. Electronic Research Archive, , () : -. doi: 10.3934/era.2021067

[10]

Yuhui Chen, Ronghua Pan, Leilei Tong. The sharp time decay rate of the isentropic Navier-Stokes system in $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $. Electronic Research Archive, 2021, 29 (2) : 1945-1967. doi: 10.3934/era.2020099

[11]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[12]

Debora Amadori, Fatima Al-Zahrà Aqel. On the decay in $ W^{1,\infty} $ for the 1D semilinear damped wave equation on a bounded domain. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5359-5396. doi: 10.3934/dcds.2021080

[13]

Shengbing Deng. Construction solutions for Neumann problem with Hénon term in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2233-2253. doi: 10.3934/dcds.2019094

[14]

Van Hoang Nguyen. A simple proof of the Adams type inequalities in $ {\mathbb R}^{2m} $. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5755-5764. doi: 10.3934/dcds.2020244

[15]

Shijin Ding, Bingyuan Huang, Xiaoyan Hou. Strong solutions to a fluid-particle interaction model with magnetic field in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021042

[16]

Clark Butler, Kiho Park. Thermodynamic formalism of $ \text{GL}_2(\mathbb{R}) $-cocycles with canonical holonomies. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2141-2166. doi: 10.3934/dcds.2020356

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[18]

Lakehal Belarbi. Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group. Electronic Research Archive, 2020, 28 (1) : 157-163. doi: 10.3934/era.2020010

[19]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[20]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (191)
  • HTML views (164)
  • Cited by (0)

Other articles
by authors

[Back to Top]