In this paper, we construct Liouville theorem for the MHD system and apply it to study the potential singularities of its weak solution. And we mainly study weak axi-symmetric solutions of MHD system in $\mathbb{R}^3× (0, T)$.
Citation: |
[1] |
H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in Rn, Chinese Ann. Math. Ser. B, 16 (1995), 407-412.
![]() |
[2] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.
![]() |
[3] |
Dongho Chae, Pierre Degond and Jian-Guo Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 555-565.
![]() |
[4] |
G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241-279.
![]() |
[5] |
Giovanni P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. II, Springer-Verlag, New York, 39(1994), xii+323.
![]() |
[6] |
Yoshikazu Giga, Katsuya Inui and Shin'ya Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Dept. Math., Seconda Univ. Napoli, Caserta, 4 (1999), 27-68.
![]() |
[7] |
Cheng He and Zhouping Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, J. Funct. Anal., 227 (2005), 113-152.
![]() |
[8] |
Cheng He and Zhouping Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.
![]() |
[9] |
L. Iskauriaza, G. A. Serëgin and V. Shverak, L3, ∞-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44.
![]() |
[10] |
Tosio Kato, Strong Lp-solutions of the avier-tokes equation in Rm, with applications to weak solutions, Math. Z., 187 (1984), 471-480.
![]() |
[11] |
Gabriel Koch, Nikolai Nadirashvili, Gregory A. Seregin and Vladimir Šverák, Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203 (2009), 83-105.
![]() |
[12] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa. Izdat. Nauka, Moscow, (1967), 736.
![]() |
[13] |
Zhen Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 259 (2015), 3202-3215.
![]() |
[14] |
A. Mahalov, B. Nicolaenko and T. Shilkin, L3, ∞-solutions to the MHD equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 336 (2006), 112-276.
![]() |
[15] |
J. Nečas, M. Růžička and V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations, Acta Math., 176 (1996), 283-294.
![]() |
[16] |
Vladimir Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66 (1976), 535-552.
![]() |
[17] |
Michel Sermange and Roger Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.
![]() |
[18] |
James Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.
![]() |
[19] |
Michael Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.
![]() |
[20] |
Roger Temam. Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI, 2001, xiv+408.
![]() |
[21] |
Gang Tian and Zhouping Xin, Gradient estimation on Navier-Stokes equations, Comm. Anal. Geom., 7 (1999), 221-257.
![]() |
[22] |
Tai-Peng Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rational Mech. Anal., 143 (1998), 29-51.
![]() |
[23] |
Zujin Zhang, Xian Yang and Shulin Qiu, Remarks on Liouville type result for the 3D Hall-MHD system, J. Partial Differ. Equ., 28 (2015), 286-290.
![]() |
[24] |
Yong Zhou and Milan Pokorny, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.
![]() |