[1]
|
D. Barbato, M. Barsati, H. Bessaih and F. Flandoli, Some rigorous results on a stochastic Goy model, J. Stat. Phys., 125 (2006), 677-716.
doi: 10.1007/s10955-006-9203-y.
|
[2]
|
A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304.
doi: 10.1007/BF00996149.
|
[3]
|
A. Bensoussan and R. Temam, Equations stochastiques de type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222.
|
[4]
|
H. Bessaih and A. Millet, Large deviation principle and inviscid shell models, Electron. J. Probab., 14 (2009), 2551-2579.
doi: 10.1214/EJP.v14-719.
|
[5]
|
H. Bessaih, F. Flandoli and E. S. Titi, Stochastic attractors for shell phenomenological models of turbulence, J. Stat. Phys., 140 (2010), 688-717.
doi: 10.1007/s10955-010-0010-0.
|
[6]
|
T. Caraballo, P. E. Kloeden and J. Real, Unique strong solutions and V-attractors of a 3- dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411-436.
doi: 10.1515/ans-2006-0304.
|
[7]
|
T. Caraballo and P. E. Kloeden, The three-dimensional globally modified Navier-Stokes equations: recent developments, Recent trends in Dynamical Systems, Springer Proc. Math. Stat., 35, 473-492 Springer, Basel, 2013.
doi: 10.1007/978-3-0348-0451-6_18.
|
[8]
|
I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: well posedness and large deviations, Appl. Math. Optim., 61 (2010), 379-420.
doi: 10.1007/s00245-009-9091-z.
|
[9]
|
P. Constantin, Near Identity Transformations for the Navier-Stokes Equations, in Handbook of Mathematical Fluid Dynamics, Vol. Ⅱ, 117-141, North-Holland, Amsterdam, 2003.
doi: 10.1016/S1874-5792(03)80006-X.
|
[10]
|
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its applications, vol. 44, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.
|
[11]
|
A. Debussche, N. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.
doi: 10.1016/j.physd.2011.03.009.
|
[12]
|
G. Deugoué and J. K. Djoko, On the time discretization for the globally modified 3- dimensional Navier-Stokes equations, J. Comput. Appl. Math., 235 (2011), 2015-2029.
doi: 10.1016/j.cam.2010.10.003.
|
[13]
|
F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 307-391.
doi: 10.1007/BF01192467.
|
[14]
|
F. Flandoli, An introduction to 3d stochastic fluid dynamics, SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Mathematics, vol. 1992, 51-150, Springer Berlin, Heidelberg, 2008.
doi: 10. 1007/978-3-540-78493-7_2.
|
[15]
|
F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 172 (1995), 119-141.
|
[16]
|
F. Flandoli, M. Gubinelli, M. Hairer and M. Romito, Rigorous remarks about scaling laws in turbulent fluid, Commun. Math. Phys., 278 (2008), 1-29.
doi: 10.1007/s00220-007-0398-9.
|
[17]
|
I. I. Gikhman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, Berlin, 1972.
|
[18]
|
N. Glatz-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Advances in Differential Equations, 14 (2009), 567-600.
|
[19]
|
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Second edition, North-Holland, Kodansha, 1989.
|
[20]
|
A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, translated from Teor. Veroyatnost. i Primenen, 42 (1997), 209-216.
doi: 10.1137/S0040585X97976052.
|
[21]
|
P. E. Kloeden and J. Valero, The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci, 463 (2007), 1491-1508.
doi: 10.1098/rspa.2007.1831.
|
[22]
|
P. E. Kloeden, J. A. Langa and J. Real, Pullback V-attractors of the three dimensional globally modified Navier-Stokes equations: existence and finite fractal dimension, Commun. Pure Appl. Anal., 6 (2007), 937-955.
doi: 10.3934/cpaa.2007.6.937.
|
[23]
|
P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802.
doi: 10.3934/cpaa.2009.8.785.
|
[24]
|
A. Kupiainen, Statistical Theories of Turbulence, In advances in Mathematical Sciences and Applications. Gakkotosho, Tokyo, 2003.
|
[25]
|
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux limites Non linéaires, Dunod, Paris, 1969.
|
[26]
|
P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927.
doi: 10.1515/ans-2011-0409.
|
[27]
|
P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673.
doi: 10.3934/dcdsb.2010.14.655.
|
[28]
|
P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 779-796.
doi: 10.3934/dcds.2011.31.779.
|
[29]
|
P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Asymptotic behavior of solutions for a three dimensional system of globally modified Navier-Stokes equations with a locally Lipschitz delay term, Nonlinear Anal., 79 (2013), 68-79.
doi: 10.1016/j.na.2012.11.006.
|
[30]
|
R. Mikulevicius and B. L. Rozovskii, Stochastic Navier-Stokes equations and Turbulent flows, SIAM J. Math. Anal., 35 (2004), 1250-1310.
doi: 10.1137/S0036141002409167.
|
[31]
|
C. Prévȏt and M. Röckner, A concise Course on Stochastic Partial Differential Equations, Springer-Verlag, 2007.
|
[32]
|
J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0.
|
[33]
|
M. Romito, The uniqueness of weak solution of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425-427.
doi: 10.1515/ans-2009-0209.
|
[34]
|
M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: Existence, uniqueness and small time large deviation principles, J. Differential Equations, 252 (2012), 716-744.
doi: 10.1016/j.jde.2011.09.030.
|
[35]
|
R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1977.
|
[36]
|
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition, SIAM, Philadelphia, 1995.
doi: 10.1137/1.9781611970050.
|