\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Power- and Log-concavity of viscosity solutions to some elliptic Dirichlet problems

Abstract Full Text(HTML) Related Papers Cited by
  • In this article we consider a special type of degenerate elliptic partial differential equations of second order in convex domains that satisfy the interior sphere condition. We show that any positive viscosity solution $u$ of

    $-|\nabla u|^α Δ^N_p u = 1$

    has the property that $u^\frac{α+1}{α+2}$ is a concave function. Secondly we consider positive solutions of the eigenvalue problem

    $-|\nabla u|^α Δ^N_p u = λ |u|^α u, $

    in which case $\log u$ turns out to be concave. The methods provided include a weak comparison principle and a Hopf-type Lemma.

    Mathematics Subject Classification: 49K20; Secondary: 35D40, 35J60, 35J70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] O. AlvarezJ.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints, Journal de Math´ematiques Pures et Appliquées, 76 (1997), 265-288.  doi: 10.1016/S0021-7824(97)89952-7.
    [2] M. Bianchini and P. Salani, Power concavity for solutions of nonlinear elliptic problems in convex domains, In Geometric Properties for Parabolic and Elliptic PDE's, pages 35-48. Springer, 2013. doi: 10.1007/978-88-470-2841-8_3.
    [3] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, Journal of Functional Analysis, 22 (1976), 366-389. 
    [4] L. A. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems, Communications in Partial Differential Equations, 7 (1982), 1337-1379.  doi: 10.1080/03605308208820254.
    [5] M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.
    [6] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Transactions of the American Mathematical Society, 277 (1983), 1-42.  doi: 10.2307/1999343.
    [7] G. Crasta and I. Fragalà, On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: regularity and geometric results, Archive for Rational Mechanics and Analysis, 218 (2015), 1577-1607.  doi: 10.1007/s00205-015-0888-4.
    [8] G. Crasta and I. Fragalà, A C1 regularity result for the inhomogeneous normalized infinity Laplacian, Proceedings of the American Mathematical Society, 144 (2016), 2547-2558.  doi: 10.1090/proc/12916.
    [9] L. C. Evans and C. K. Smart, Everywhere differentiability of infinity harmonic functions, Calculus of Variations and Partial Differential Equations, 42 (2011), 289-299.  doi: 10.1007/s00526-010-0388-1.
    [10] B. Ishige and P. Salani, A note on parabolic power concavity, Kodai Mathematical Journal, 37 (2014), 668-679.  doi: 10.2996/kmj/1414674615.
    [11] B. Kawohl, When are superharmonic functions concave? Applications to the St. Venant torsion problem and to the fundamental mode of the clamped membrane, Zeitschrift für Angewandte Mathematik und Mechanik, 64 (1984), T364-T366. 
    [12] B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, volume 1150 of Lecture Notes in Mathematics, Springer, 1985. doi: 10.1007/BFb0075060.
    [13] B. Kawohl, When are solutions to nonlinear elliptic boundary value problems convex?, Communications in Partial Differential Equations, 10 (1985), 1213-1225.  doi: 10.1080/03605308508820404.
    [14] B. Kawohl and J. Horák, On the geometry of the p-Laplacian operator, Discrete and Continuous Dynamical Systems. Series S, 10 (2017), 799-813.  doi: 10.3934/dcdss.2017040.
    [15] A. Kennington, Power concavity and boundary value problems, Indiana U. Math. J, 34 (1985), 687-704.  doi: 10.1512/iumj.1985.34.34036.
    [16] N. Korevaar, Capillary surface convexity above convex domains, Indiana University Mathematics Journal, 32 (1983), 73-81.  doi: 10.1512/iumj.1983.32.32007.
    [17] N. J. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana University Mathematics Journal, 32 (1983), 603-614.  doi: 10.1512/iumj.1983.32.32042.
    [18] M. Kühn, On Viscosity Solutions and the Normalized p-Laplacian, PhD thesis, University of Cologne, 2017.
    [19] T. Kulczycki, On concavity of solutions of the dirichlet problem for the equation $ {\left( { - \Delta u} \right)^{\frac{1}{2}}}\varphi = 1 $ in convex planar regions, Journal of the European Mathematical Society, 19 (2017), 1361-1420.  doi: 10.4171/JEMS/695.
    [20] G. Lu and P. Wang, A PDE perspective of the normalized infinity Laplacian, Communications in Partial Differential Equations, 33 (2008), 1788-1817.  doi: 10.1080/03605300802289253.
    [21] G. Lu and P. Wang, A uniqueness theorem for degenerate elliptic equations, In Lecture Notes of Seminario Interdisciplinare di Matematica 7, Conference on Geometric Methods in PDE's, On the Occasion of 65th Birthday of Ermanno Lanconelli (Bologna), pages 207-222, Potenza: Università degli Studi della Basilicata, Dipartimento die Matematica e Informatica, 2008.
    [22] L. G. Makar-Limanov, Solution of Dirichlet's problem for the equation Δu = −1 in a convex region, Mathematical Notes of the Academy of Sciences of the USSR, 9 (1971), 52-53. 
    [23] S. Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 14 (1987), 403-421. 
    [24] L. Zhao, Power concavity for doubly nonlinear parabolic equations, Journal of Mathematical Study. Shuxue Yanjiu, 50 (2017), 190-198.  doi: 10.4208/jms.v50n2.17.05.
  • 加载中
SHARE

Article Metrics

HTML views(493) PDF downloads(226) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return