\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On variational and topological methods in nonlinear difference equations

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, first we survey the recent progress in usage of the critical point theory to study the existence of multiple periodic and subharmonic solutions in second order difference equations and discrete Hamiltonian systems with variational structure. Next, we propose a new topological method, based on the application of the equivariant version of the Brouwer degree to study difference equations without an extra assumption on variational structure. New result on the existence of multiple periodic solutions in difference systems (without assuming that they are their variational) satisfying a Nagumo-type condition is obtained. Finally, we also put forward a new direction for further investigations.

    Mathematics Subject Classification: 39A12, 39A23, 58E50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York, 1992.
    [2] R. P. AgarwalK. Perera and D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal., 58 (2004), 69-73.  doi: 10.1016/j.na.2003.11.012.
    [3] R. P. AgarwalK. Perera and D. O'Regan, Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. Difference Equ., 2 (2005), 93-99. 
    [4] G. Barletta and P. Candito, Infinitely many constant-sign solutions for a discrete parameter-depending Neumann problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22 (2015), 453-463. 
    [5] D. Bai and Y. Xu, Nontrivial solutions of boundary value problems of second-order difference equations, J. Math. Anal. Appl., 326 (2007), 297-302.  doi: 10.1016/j.jmaa.2006.02.091.
    [6] Z. BalanovM. FarzamiradW. Krawcewicz and H. Ruan, Applied equivariant degree, part Ⅱ: Symmetric Hopf bifurcation for functional differential equations, Discrete Contin. Dyn. Syst., 16 (2006), 923-960.  doi: 10.3934/dcds.2006.16.923.
    [7] Z. BalanovW. KrawcewiczZ. Li and M. Nguyen, Multiple solutions to implicit symmetric boundary value problems for second order ordinary differential equations (ODEs): Equivariant degree approach, Symmetry, 5 (2013), 287-312.  doi: 10.3390/sym5040287.
    [8] Z. BalanovW. Krawcewicz and M. Nguyen, Multiple solutions to symmetric boundary value problems for second order ODEs: equivariant degree approach, Nonlinear Anal., 94 (2014), 45-64.  doi: 10.1016/j.na.2013.07.030.
    [9] Z. BalanovW. Krawcewicz and H. Ruan, Hopf bifurcation in a symmetric configuration of lossless transmission lines, Nonlinear Anal. Real World Appl., 8 (2007), 1144-1170.  doi: 10.1016/j.nonrwa.2006.04.004.
    [10] Z. BalanovW. KrawcewiczS. Rybicki and H. Steinlein, A short treatise on the equivariant degree theory and its applications, J. Fixed Point Theory Appl., 8 (2010), 1-74.  doi: 10.1007/s11784-010-0033-9.
    [11] Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, American Institute of Mathematical Sciences, 2006.
    [12] G. Bonanno and P. Candito, Nonlinear difference equations investigated via critical point methods, Nonlinear Anal., 70 (2009), 3180-3186.  doi: 10.1016/j.na.2008.04.021.
    [13] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Analysis, TMA, 20 (1993), 1205-1216.  doi: 10.1016/0362-546X(93)90151-H.
    [14] T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555-3561.  doi: 10.2307/2161107.
    [15] C. Brezinski, History of Continued Fractions and Pade Approximants, Springer Verlag, New York, 1991. doi: 10.1007/978-3-642-58169-4.
    [16] A. CabadaA. Iannizzotto and S. Tersian, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl., 356 (2009), 418-428.  doi: 10.1016/j.jmaa.2009.02.038.
    [17] X. C. Cai and J. S. Yu, Existence of periodic solutions for a 2nth-order nonlinear difference equation, J. Math. Anal. Appl., 329 (2007), 870-878.  doi: 10.1016/j.jmaa.2006.07.022.
    [18] X. C. Cai and J. S. Yu, Existence theorems of periodic solutions for second-order nonlinear difference equations, Adv. Difference Equ., 2008, Art. ID 247071, 11 pages.
    [19] X. C. CaiJ. S. Yu and Z. M. Guo, Existence of periodic solutions for fourth-order difference equations, Comput. Math. Appl., 50 (2005), 49-55.  doi: 10.1016/j.camwa.2005.03.004.
    [20] P. Candito and G. D'Agui, Three solutions for a discrete nonlinear Neumann problem involving the $p$-Laplacian, Adv. Difference Equ., 2010, Art. ID 862016, 11 pages.
    [21] P. Candito and G. D'Agui, Constant-sign solutions for a nonlinear Neumann problem involving the discrete $p$-Laplacian, Opuscula Math., 34 (2014), 683-690.  doi: 10.7494/OpMath.2014.34.4.683.
    [22] P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem involving the $p$-Laplacian, Comput. Math. Appl., 56 (2008), 959-964.  doi: 10.1016/j.camwa.2008.01.025.
    [23] E. Caspari and G. S. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitos, Evolution, 13 (1959), 568-570. 
    [24] K. C. Chang, Critical Point Theory and its Applications (in Chinese), Science and Technical Press, Shanghai, China, 1986.
    [25] K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0385-8.
    [26] C. F. Che and X. P. Xie, Infinitely many periodic solutions for discrete second order Hamiltonian system with oscillating potentials, Adv. Difference Equ., 2012 (2012), 50, 9 pages.
    [27] P. Chen and H. Fang, Existence of periodic and subharmonic solutions for second order $p$-Laplacian difference equations, Adv. Difference Equ., 2007, Art. ID 42530, 9 pages.
    [28] P. Chen and X. H. Tang, Existence of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations, J. Math. Anal. Appl., 381 (2001), 485-505.  doi: 10.1016/j.jmaa.2011.02.016.
    [29] Y. Chen and Z. Zhou, Stable periodic solution of a discrete periodic Lotka-Volterra competition system, J. Math. Anal. Appl., 277 (2003), 358-366.  doi: 10.1016/S0022-247X(02)00611-X.
    [30] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38, American Mathematical Society, Providence, R. I., 1978
    [31] M. Dabkowski, W. Krawcewicz, Y. Lv, H-P. Wu, Multiple Periodic Solutions for $Γ$-Symmetric Newtonian Systems, J. Differential Equations, (2017), to appear. doi: 10.1016/j.jde.2017.07.027.
    [32] G. D'AguiJ. Mawhin and A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with $p$-Laplacian, J. Math. Anal. Appl., 447 (2017), 383-397.  doi: 10.1016/j.jmaa.2016.10.023.
    [33] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.
    [34] S. N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3110-1.
    [35] F. Faraci and A. Iannizzotto, Multiplicity theorems for discrete boundary value problems, Aequationes Math., 74 (2007), 111-118.  doi: 10.1007/s00010-006-2855-5.
    [36] B. FiedlerV. FlunkertP. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 319-341.  doi: 10.1098/rsta.2009.0232.
    [37] A. Floer, Witten's complex and infinite-dimensional Morse theory, J. Differential Geom., 30 (1989), 207-221. 
    [38] R. Gaines and J. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics, 568, Springer-Verlag, Berlin-New York, 1977.
    [39] C. Garcia-Azpeitia, Traveling and standing waves in coupled pendula and Newton's cradle, J. Nonlinear Science, (2016), 1767-1787.  doi: 10.1007/s00332-016-9318-5.
    [40] C. Garcia-Azpeitia and J. Ize, Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the $n$-body problem, J. Differential Equations, 254 (2013), 2033–2075 doi: 10.1016/j.jde.2012.08.022.
    [41] C. Garcia-Azpeitia and J. Ize, Bifurcation of periodic solutions from a ring configuration in the vortex and filament problems, J. Differential Equations, 252 (2012), 5662–5678 doi: 10.1016/j.jde.2012.01.044.
    [42] J. M. Grandmon, Nonlinear difference equations, bifurcations and chaos: An introduction, Research in Economics, 62 (2008), 122-177. 
    [43] I. Gröri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford University Press, Oxford, 1991.
    [44] H. Gu and T. An, Existence of periodic solutions for a class of second-order discrete Hamiltonian systems, J. Difference Equ. Appl., 21 (2015), 197-208.  doi: 10.1080/10236198.2014.993322.
    [45] Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.  doi: 10.1360/03ys9051.
    [46] Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions to subquadratic second-order difference equations, J. London Math. Soc., 68 (2003), 419-430.  doi: 10.1112/S0024610703004563.
    [47] Z. M. Guo and J. S. Yu, The Existence of periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems, Nonlinear Anal., 55 (2003), 669-683.  doi: 10.1016/j.na.2003.07.019.
    [48] Z. M. Guo and J. S. Yu, Multiplicity results for periodic solutions to second order difference equations, J. Dynam. Differential Equations, 18 (2006), 943-960.  doi: 10.1007/s10884-006-9042-1.
    [49] Z. M. Guo and Y. T. Xu, Existence of periodic solutions to a class of second-order neutral differential difference equations, Acta Anal. Funct. Appl., 5 (2003), 13-19. 
    [50] E. Hooton, Z. Balanov, W. Krawcewicz and D. Rachinskii, Non-invasive stabilization of periodic orbits in $O_4$-symmetrically coupled systems near a Hopf bifurcation point, Internat. J. Bifur. Chaos Appl. Sci. Engrg. bf, 27 (2017), 1750087. doi: 10.1142/S0218127417500870.
    [51] T. S. He and W. G. Chen, Periodic solutions of second order discrete convex systems involving the $p$-Laplacian, Appl. Math. Comput., 206 (2008), 124-132.  doi: 10.1016/j.amc.2008.08.037.
    [52] J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, 8 Walter de Gruyter & Co., Berlin, 2003. doi: 10.1515/9783110200027.
    [53] Q. JiangS. Ma and Z. H. Hu, Existence of multiple periodic solutions for second-order discrete Hamiltonian system with partially periodic potential, Electron. J. Differential Equations, 307 (2016), 1-14. 
    [54] P. JebeleanJ. Mawhin and C. Şerban, Morse theory and multiple periodic solutions of some quasilinear difference systems with periodic nonlinearities, Georgian Math. J., 24 (2017), 103-112.  doi: 10.1515/gmj-2016-0075.
    [55] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Boston, 1993. doi: 10.1007/978-94-017-1703-8.
    [56] M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book The Macmillan Co., New York, 1964.
    [57] M. A. Krasnoselskii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Grundlehren der Mathematischen Wissenschaften, 263. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.
    [58] W. Krawcewicz and J. H. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, Wiley-Interscience and Canadian Mathematics Series of Monographs and Texts, 1997.
    [59] W. KrawcewiczH-P. Wu and S. Yu, Periodic solutions in reversible second order autonomous systems with symmetries, J. Nonlinear Convex Anal., 18 (2017), 1393-1419. 
    [60] W. KrawcewiczJ. S. Yu and H. F. Xiao, Multiplicity of periodic solutions to symmetric delay differential equations, J. Fixed Point Theory Appl., 13 (2013), 103-141.  doi: 10.1007/s11784-013-0119-2.
    [61] Alexandru KristályMihai Mihăilescu and Vicenţiu Rădulescu, Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions, J. Difference Equ. Appl., 17 (2011), 1431-1440.  doi: 10.1080/10236190903555245.
    [62] J. H. Leng, Periodic and subharmonic solutions for 2nth-order $\varphi_c$-Laplacian difference equations containing both advance and retardation, Indag. Math. (N.S.), 27 (2016), 902-913.  doi: 10.1016/j.indag.2016.05.002.
    [63] Y. J. Li, The existence of solutions for second-order difference equations, J. Difference Equ. Appl., 12 (2006), 209-212.  doi: 10.1080/10236190500539394.
    [64] G. Lin and Z. Zhou, Homoclinic solutions of discrete $φ$-Laplacian equations with mixed nonlinearities, Comm. Pure Appl. Anal., 17 (2018), 1723-1747.
    [65] J. S. LiuS. L. Wang and J. M. Zhang, et al., Nontrivial solutions for discrete boundary value problems with multiple resonance via computations of the critical groups, Nonlinear Anal., 75 (2012), 3809-3820.  doi: 10.1016/j.na.2012.02.003.
    [66] S. B. Liu, Multiple periodic solutions for non-linear difference systems involving the p-Laplacian, J. Difference Equ. Appl., 17 (2011), 1591-1598.  doi: 10.1080/10236191003730480.
    [67] X. LiuH. P. Shi and Y. B. Zhang, Existence of periodic solutions of second order nonlinear p-Laplacian difference equations, Acta Math. Hungar., 133 (2011), 148-165.  doi: 10.1007/s10474-011-0137-8.
    [68] Y. H. Long, Applications of Clark duality to periodic solutions with minimal period for discrete Hamiltonian systems, J. Math. Anal. Appl., 342 (2008), 726-741.  doi: 10.1016/j.jmaa.2007.10.075.
    [69] Y. H. Long, Multiplicity results for periodic solutions with prescribed minimal periods to discrete Hamiltonian systems, J. Difference Equ. Appl., 17 (2011), 1499-1518.  doi: 10.1080/10236191003657220.
    [70] Y. H. LongZ. M. Guo and H. P. Shi, Multiple periodic solutions with minimal period for second order discrete system, Acta Appl. Math., 110 (2010), 181-193.  doi: 10.1007/s10440-008-9396-y.
    [71] Y. H. LongY. B. Zhang and H. P. Shi, Homoclinic solutions of 2nth-order difference equations containing both advance and retardation, Open Math., 14 (2016), 520-530.  doi: 10.1515/math-2016-0046.
    [72] J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\varphi$-Laplacian: a variational approach, Nonlinear Anal., 75 (2012), 4672-4687.  doi: 10.1016/j.na.2011.11.018.
    [73] J. Mawhin, Periodic solutions of second order Lagrangian difference systems with bounded or singular $\varphi$-Laplacian and periodic potential, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1065-1076.  doi: 10.3934/dcdss.2013.6.1065.
    [74] J. Mawhin, A simple proof of multiplicity for periodic solutions of Lagrangian difference systems with relativistic operator and periodic potential, J. Difference Equ. Appl., 22 (2016), 306-315.  doi: 10.1080/10236198.2015.1089867.
    [75] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Spinger-Verlag, New York Inc., 1989. doi: 10.1007/978-1-4757-2061-7.
    [76] R. M. May, Biological populationobeying difference equaqtions: stable points, stable cycles and chaos, J. Theoret. Biol., 51 (1975), 511-524. 
    [77] H. MatsunagaT. Hara and S. Sakata, Global attractivity for a nonlinear difference equation with variable delay, Comput. Math. Appl., 41 (2001), 543-551.  doi: 10.1016/S0898-1221(00)00297-2.
    [78] K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A, 170 (1992), 421-428. 
    [79] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS. AMS, 65, 1986. doi: 10.1090/cbms/065.
    [80] B. Ricceri, A general multiplicity theorem for certain nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc., 133 (2005), 3255-3261.  doi: 10.1090/S0002-9939-05-08218-3.
    [81] R. Sahadevan and N. Kannagi, Continuous nonpoint symmetries of ordinary difference equations, J. Math. Anal. Appl., 324 (2006), 199-215.  doi: 10.1016/j.jmaa.2005.11.072.
    [82] A. N. Sharkovsky, Yu. L. Maistrenko and E. Yu. Romanenko, Difference Equations and their Applications, Kluwer Academic Publishers, Dordrecht, 1993. doi: 10.1007/978-94-011-1763-0.
    [83] D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266-275.  doi: 10.1006/jfan.1996.3121.
    [84] H. P. ShiX. Liu and Y. B. Zhang, Existence of periodic solutions for 2nth-order nonlinear $p$-Laplacian difference equations, Rocky Mountain J. Math., 46 (2016), 1679-1699.  doi: 10.1216/RMJ-2016-46-5-1679.
    [85] H. P. Shi and X. J. Zhong, Existence of periodic and subharmonic solutions for second order functional difference equations, Acta Math. Appl. Sin. Engl. Ser., 26 (2010), 229-240.  doi: 10.1007/s10255-007-7150-2.
    [86] H. P. Shi and Y. B. Zhang, Existence of periodic solutions for a 2nth-order nonlinear difference equation, Taiwanese J. Math., 20 (2016), 143-160.  doi: 10.11650/tjm.20.2016.5844.
    [87] F. H. Tan and Z. M. Guo, Periodic solutions for second-order difference equations with resonance at infinity, J. Difference Equ. Appl., 18 (2012), 149-161.  doi: 10.1080/10236191003730498.
    [88] J. P. Tan and Z. Zhou, Boundary value problems for a coupled system of second-order nonlinear difference equations, Adv. Difference Equ., 2017 (2017), 210, 15 pages. doi: 10.1186/s13662-017-1257-4.
    [89] C. L. Tang and X. P. Wu, Periodic solutions for a class of new superquadratic second order Hamiltonian systems, Appl. Math. Lett., 34 (2014), 65-71.  doi: 10.1016/j.aml.2014.04.001.
    [90] X. H. Tang and J. S. Yu, Oscillation of nonlinear delay difference equations, J. Math. Anal. Appl., 249 (2000), 476-490.  doi: 10.1006/jmaa.2000.6902.
    [91] Y. TianZ. J. Du and W. G. Gao, Existence results for discrete Sturm-Liouville problem via variational methods, J. Difference Equ. Appl., 13 (2007), 467-478.  doi: 10.1080/10236190601086451.
    [92] M. Turelli, Cytoplasmic incompatibility in populations with overlappling generations, Evolution, 64 (2009), 232-241. 
    [93] D. B. Wang, H. F. Xie and W. Guan, Existence of periodic solutions for nonautonomous second-order discrete Hamiltonian systems, Adv. Difference Equ., 2016 (2016), 309, 7 pages. doi: 10.1186/s13662-016-1036-7.
    [94] Q. Wang and Q. Q. Zhang, Dynamics of a higher-order rational difference equation, J. Appl. Anal. Comput., 7 (2017), 770-787. 
    [95] Q. Wang and Z. Zhou, Solutions of the boundary value problem for a $2n$th-order nonlinear difference equation containing both advance and retardation, Adv. Difference Equ., 2013 (2013), 322, 9 pages.
    [96] H. F. Xiao and J. S. Yu, Heteroclinic orbits for a discrete pendulum equation, J. Difference Equ. Appl., 17 (2011), 1267-1280.  doi: 10.1080/10236190903167991.
    [97] Y. F. Xue and C. L. Tang, Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems, Appl. Math. Comput., 196 (2008), 494-500.  doi: 10.1016/j.amc.2007.06.015.
    [98] Y. F. Xue and C. L. Tang, Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear Anal., 67 (2007), 2072-2080.  doi: 10.1016/j.na.2006.08.038.
    [99] S. H. YanX. P. Wu and C. L. Tang, Multiple periodic solutions for second-order discrete Hamiltonian systems, Appl. Math. Comput., 234 (2014), 142-149.  doi: 10.1016/j.amc.2014.01.160.
    [100] J. S. YuH. H. Bin and Z. M. Guo, Periodic solutions for discrete convex Hamiltonian systems via Clarke duality, Discrete Contin. Dyn. Syst., 15 (2006), 939-950.  doi: 10.3934/dcds.2006.15.939.
    [101] J. S. YuH. H. Bin and Z. M. Guo, Multiple periodic solutions for discrete Hamiltonian systems, Nonlinear Anal., 66 (2007), 1498-1512.  doi: 10.1016/j.na.2006.01.029.
    [102] J. S. YuX. Q. Deng and Z. M. Guo, Periodic solutions of a discrete Hamiltonian system with a change of sign in the potential, J. Math. Anal. Appl., 324 (2006), 1140-1151.  doi: 10.1016/j.jmaa.2006.01.013.
    [103] J. S. Yu and Z. M. Guo, Some problems on the global attractivity of linear nonautonomous difference equations, Sci. China Ser. A, 46 (2003), 884-892.  doi: 10.1360/02ys0285.
    [104] J. S. Yu and Z. M. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differential Equations, 231 (2006), 18-31.  doi: 10.1016/j.jde.2006.08.011.
    [105] J. S. YuZ. M. Guo and X. Zou, Periodic solutions of second order self-adjoint difference equations, J. London. Math. Soc., 71 (2005), 146-160.  doi: 10.1112/S0024610704005939.
    [106] J. S. YuY. H. Long and Z. M. Guo, Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation, J. Dynam. Differential Equations, 16 (2004), 575-586.  doi: 10.1007/s10884-004-4292-2.
    [107] J. S. YuH. P. Shi and Z. M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation, J. Math. Anal. Appl., 352 (2009), 799-806.  doi: 10.1016/j.jmaa.2008.11.043.
    [108] J. S. Yu and B. Zheng, Multiplicity of periodic solutions for second-order discrete Hamiltonian systems with a small forcing term, Nonlinear Anal., 69 (2008), 3016-3029.  doi: 10.1016/j.na.2007.08.069.
    [109] G. Zhang and S. Liu, On a class of semipositone discrete boundary value problems, J. Math. Anal. Appl., 325 (2007), 175-182.  doi: 10.1016/j.jmaa.2005.12.047.
    [110] H. Zhang and Z. X. Li, Periodic solutions for a class of nonlinear discrete Hamiltonian systems via critical point theory, J. Difference Equ. Appl., 16 (2010), 1381-1391.  doi: 10.1080/10236190902821689.
    [111] Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Commun. Pure Appl. Anal., 14 (2015), 1929-1940.  doi: 10.3934/cpaa.2015.14.1929.
    [112] Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proc. Amer. Math. Soc., 143 (2015), 3155-3163.  doi: 10.1090/S0002-9939-2015-12107-7.
    [113] Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Comm. Pure Appl. Anal., (accepted for publication).
    [114] X. Y. Zhang, Notes on periodic solutions for a nonlinear discrete system involving the $p$-Laplacian, Bull. Malays. Math. Sci. Soc., 37 (2014), 499-510. 
    [115] B. Zheng and Q. Q. Zhang, Existence and multiplicity of solutions of second-order difference boundary value problems, Acta Appl. Math., 110 (2010), 131-152.  doi: 10.1007/s10440-008-9389-x.
    [116] Z. Zhou and D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781-790.  doi: 10.1007/s11425-014-4883-2.
    [117] Z. Zhou and M. T. Su, Boundary value problems for $2n$-order $φ_c$-Laplacian difference equations containing both advance and retardation, Appl. Math. Lett., 41 (2015), 7-11.  doi: 10.1016/j.aml.2014.10.006.
    [118] Z. ZhouJ. S. Yu and Y. M. Chen, Periodic solutions of a $2n$th-order nonlinear difference equation, Sci. China Math., 53 (2010), 41-50.  doi: 10.1007/s11425-009-0167-7.
    [119] Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212.  doi: 10.1016/j.jde.2010.03.010.
    [120] Z. ZhouJ. S. Yu and Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 54 (2011), 83-93.  doi: 10.1007/s11425-010-4101-9.
    [121] Z. ZhouJ. S. Yu and Y. M. Chen, On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 23 (2010), 1727-1740.  doi: 10.1088/0951-7715/23/7/011.
    [122] Z. ZhouJ. S. Yu and Z. M. Guo, Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 1013-1022.  doi: 10.1017/S0308210500003607.
    [123] Z. ZhouJ. S. Yu and Z. M. Guo, The existence of periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems, ANZIAM J., 47 (2005), 89-102.  doi: 10.1017/S1446181100009792.
    [124] B. S. Zhu and J. S. Yu, Multiple positive solutions for resonant difference equations, Math. Comput. Modelling, 49 (2009), 1928-1936.  doi: 10.1016/j.mcm.2008.09.009.
  • 加载中
SHARE

Article Metrics

HTML views(772) PDF downloads(506) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return