In the present paper, we consider the following Kirchhoff type problem
$\begin{cases}-\Big(a+λ∈t_{\mathbb R^N} | \nabla u|^2dx\Big) Δ u+V(x)u = |u|^{2^*-2}u \;\;\;{\rm in}\ \mathbb{R}^N,\\u∈ D^{1,2}(\mathbb R^N),\end{cases}$
where $a$ is a positive constant, $λ$ is a positive parameter, $V∈ L^{\frac{N}{2}}(\mathbb{R}^N)$ is a given nonnegative function and $2^*$ is the critical exponent. The existence of bounded state solutions for Kirchhoff type problem with critical exponents in the whole $\mathbb R^N$ ($N≥5$ ) has never been considered so far. We obtain sufficient conditions on the existence of bounded state solutions in high dimension $N≥4$ , and especially it is the fist time to consider the case when $N≥5$ in the literature.
Citation: |
[1] |
C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 2 (2010), 409-417.
doi: 10.7153/dea-02-25.![]() ![]() ![]() |
[2] |
V. Benci and G. Cerami, Existence of positive solutions of the equation $-Δ u+a(x)u = u^{(N+2)/(N-2)}$ in $\mathbb R^N$, J. Funct. Anal., 88 (1990), 90-117.
doi: 10.1016/0022-1236(90)90120-A.![]() ![]() ![]() |
[3] |
D. M. Cao and H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbb R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 443-463.
doi: 10.1017/S0308210500022836.![]() ![]() ![]() |
[4] |
P. Chen and X. Liu, Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent, Commun. Pure Appl. Anal., 17 (2018), 113-125.
doi: 10.3934/cpaa.2018007.![]() ![]() ![]() |
[5] |
W. Y. Ding, On a Conformally Invariant Elliptic Equation on $\mathbb R^N$, Commun. Math. Phys., 107 (1986), 331-335.
![]() ![]() |
[6] |
P. L. Felmer, A. Quaas, M. X. Tang and J. S. Yu, Monotonicity properties for ground states of the scalar field equation, Ann. I. H. Poincaré-AN., 25 (2008), 105-119.
doi: 10.1016/j.anihpc.2006.12.003.![]() ![]() ![]() |
[7] |
G. M. Figueiredo, R. C. Morales, J. J. R. Santos and A. Suárez, Study of a nonlinear Kirchhoff equation with non-homogeneous material, J. Math. Anal. Appl., 416 (2014), 597-608.
doi: 10.1016/j.jmaa.2014.02.067.![]() ![]() ![]() |
[8] |
X. M. He and W. M. Zou, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura Appl., 193 (2014), 473-500.
doi: 10.1007/s10231-012-0286-6.![]() ![]() ![]() |
[9] |
Y. S. Huang, Z. Liu and Y. Z. Wu, On Kirchhoff type equations with critical Sobolev exponent and Naimen's open problems, Mathematics, 7 (2015), 97-114.
![]() |
[10] |
Y. S. Huang, Z. Liu and Y. Z. Wu, On finding solutions of a Kirchhoff type problem, Proc. Amer. Math. Soc., 144 (2016), 3019-3033.
doi: 10.1090/proc/12946.![]() ![]() ![]() |
[11] |
G. B. Li and H. Y. Ye, Existence of positive solutions for nonlinear Kirchhoff type problems in $\mathbb R^3$ with critical Sobolev exponent, Math. Methods Appl. Sci., 37 (2014), 2570-2584.
doi: 10.1002/mma.3000.![]() ![]() ![]() |
[12] |
Z. S. Liu and S. J. Guo, On ground states for the Kirchhoff-type problem with a general critical nonlinearity, J. Math. Anal. Appl., 426 (2015), 267-287.
doi: 10.1016/j.jmaa.2015.01.044.![]() ![]() ![]() |
[13] |
Z. S. Liu and S. J. Guo, Existence and concentration of positive ground state for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66 (2015), 747-769.
doi: 10.1007/s00033-014-0431-8.![]() ![]() ![]() |
[14] |
J. Liu, J. F. Liao and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbb R^N$, J. Math. Anal. Appl., 429 (2015), 1153-1172.
doi: 10.1016/j.jmaa.2015.04.066.![]() ![]() ![]() |
[15] |
Z. Liu, S. Guo and Y. Fang, Positive solutions of Kirchhoff type elliptic equations in $\mathbb R^4$ with critical growth, Mathematische Nachrichten, 290 (2017), 367-381.
doi: 10.1002/mana.201500358.![]() ![]() ![]() |
[16] |
R. Q. Liu, C. L. Tang, J. F. Liao and X. P. Wu, Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four, Commun. Pure Appl. Anal., 15 (2016), 1841-1856.
doi: 10.3934/cpaa.2016006.![]() ![]() ![]() |
[17] |
D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, Nonlinear Differ. Equ. Appl., 21 (2014), 885-914.
doi: 10.1007/s00030-014-0271-4.![]() ![]() ![]() |
[18] |
D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differential Equations, 257 (2014), 1168-1193.
doi: 10.1016/j.jde.2014.05.002.![]() ![]() ![]() |
[19] |
G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. I. H. Poincaré-AN., 9 (1992), 281-304.
doi: 10.1016/S0294-1449(16)30238-4.![]() ![]() ![]() |
[20] |
M. Willem, Minimax Theorems, Birkhäuser, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[21] |
J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 253 (2012), 2314-2351.
doi: 10.1016/j.jde.2012.05.023.![]() ![]() ![]() |
[22] |
J. Wang and L. Xiao, Existence and concentration of solutions for a Kirchhoff tpye problem with potentials, Discrete Contin. Dyn. Syst. A, 12 (2016), 7137-7168.
doi: 10.3934/dcds.2016111.![]() ![]() ![]() |
[23] |
Y. J. Sun and X. Liu, Existence of positive solutions for Kirchhoff type problems with critical exponent, J. Partial Differ. Equ., 25 (2012), 187-198.
![]() ![]() |
[24] |
Q. L. Xie, X. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786.
doi: 10.3934/cpaa.2013.12.2773.![]() ![]() ![]() |
[25] |
Q. L. Xie, S. W. Ma and X. Zhang, Bound state solutions of Kirchhoff type problems with critical exponent, J. Differential Equations, 261 (2016), 890-924.
doi: 10.1016/j.jde.2016.03.028.![]() ![]() ![]() |