In this paper, some new results on the the regularity of Kolmogorov equations associated to the infinite dimensional OU-process are obtained. As an application, the average $L^2$-error on $[0, T]$ of exponential integrator scheme for a range of semi-linear stochastic partial differential equations is derived, where the drift term is assumed to be Hölder continuous with respect to the Sobolev norm $\|·\|_{β}$ for some appropriate $β>0$. In addition, under a stronger condition on the drift, the strong convergence estimate is obtained, which covers the result of the SDEs with Hölder continuous drift.
Citation: |
[1] |
J. Bao, X. Huang and C. Yuan, Convergence Rate of Euler-Maruyama Scheme for SDEs with Rough Coefficients, arXiv: 1609.06080.
![]() ![]() |
[2] |
A. Barth and A. Lang, $L^p$ and almost sure convergence of a Milstein scheme for stochastic partial differential equations, Stochastic Process. Appl., 123 (2013), 1563-1587.
doi: 10.1016/j.spa.2013.01.003.![]() ![]() ![]() |
[3] |
A. Barth, A. Lang and Ch. Schwab, Multilevel Monte Carlo method for parabolic stochastic partial differential equations, BIT Numerical Mathematics, 53 (2013), 3-27.
doi: 10.1007/s10543-012-0401-5.![]() ![]() ![]() |
[4] |
P. E. Chaudru de Raynal, Strong existence and uniqueness for stochastic differential equation with Hölder drift and degenerate noise, to appear in Ann. Inst. Henri Poincaré Probab. Stat..
doi: 10.1214/15-AIHP716.![]() ![]() ![]() |
[5] |
A. Debussche, Weak approximation of stochastic partial differential equations: the nonlinear case, Math. Comp., 273 (2011), 89-117.
doi: 10.1090/S0025-5718-2010-02395-6.![]() ![]() ![]() |
[6] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() ![]() |
[7] |
G. Da Prato, F. Flandoli, E. Priola and M. Röckner, Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift, Ann. Probab., 41 (2013), 3306-3344.
doi: 10.1214/12-AOP763.![]() ![]() ![]() |
[8] |
G. Da Prato, F. Flandoli, E. Priola and M. Röckner, Strong uniqueness for stochastic evolution equations with unbounded measurable drift term, J. Theor. Probab., 28 (2015), 1571-1600.
doi: 10.1007/s10959-014-0545-0.![]() ![]() ![]() |
[9] |
G. Da Prato, F. Flandoli, M. Röckner and A. Yu, Veretennikov, Strong uniqueness for SDEs in Hilbert spaces with non-regular drift, arXiv: 1404.5418.
doi: 10.1214/15-AOP1016.![]() ![]() ![]() |
[10] |
E. Fedrizzi and F. Flandoli, Pathwise uniqueness and continuous dependence for SDEs with nonirregular drift, Stochastics, 83 (2011), 241-257.
doi: 10.1080/17442508.2011.553681.![]() ![]() ![]() |
[11] |
T. E. Govindan, Mild solutions of neutral stochastic partial functional differential equations, International Journal of Stochastic Analysis, (2011), 186206.
![]() ![]() |
[12] |
I. Gyöngy and N. Krylov, On the splitting-up method and stochastic partial differential equations, Ann. Probab., 31 (2003), 564-591.
doi: 10.1214/aop/1048516528.![]() ![]() ![]() |
[13] |
I. Gyöngy and T. Martinez, On stochastic differential equations with locally unbounded drift, Czechoslovak Math.J., 51 (2001), 763-783.
doi: 10.1023/A:1013764929351.![]() ![]() ![]() |
[14] |
I. Gyöngy and M. Rásonyi, A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients, Stochastic Process. Appl., 121 (2011), 2189-2200.
doi: 10.1016/j.spa.2011.06.008.![]() ![]() ![]() |
[15] |
I. Gyöngy, S. Sabanis and D. Šiška, Convergence of tamed Euler schemes for a class of stochastic evolution equations, Stoch PDE: Anal. Comp., 4 (2016), 225-245.
doi: 10.1007/s40072-015-0057-7.![]() ![]() ![]() |
[16] |
E. Hausenblas, Approximation for semilinear stochastic evolution equations, Potential Anal., 18 (2003), 141-186.
doi: 10.1023/A:1020552804087.![]() ![]() ![]() |
[17] |
X. Huang and Z. Liao, The Euler-Maruyama method for (functional) SDEs with Hölder drift and $\alpha$-stable noise, Stoch. Anal. Appl., 36 (2018), 28-39.
doi: 10.1080/07362994.2017.1371037.![]() ![]() ![]() |
[18] |
P. E. Kloeden, G. J. Lord, A. Neuenkirch and T. Shardlow, The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds, J. Comput. Appl. Math., 235 (2011), 1245-1260.
doi: 10.1016/j.cam.2010.08.011.![]() ![]() ![]() |
[19] |
R. Kruse, Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise, IMA J. Numer. Anal., 34 (2014), 217-251.
doi: 10.1093/imanum/drs055.![]() ![]() ![]() |
[20] |
N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Relat. Fields, 131 (2005), 154-196.
doi: 10.1007/s00440-004-0361-z.![]() ![]() ![]() |
[21] |
A. Lang, P.-L. Chow and J. Potthoff, Almost sure convergence for a semidiscrete Milstein scheme for SPDEs of Zakai type, Stochastics, 82 (2010), 315-326.
doi: 10.1080/17442501003653497.![]() ![]() ![]() |
[22] |
G. J. Lord and J. Rougemont, A numerical scheme for stochastic PDEs with gevrey regularity, IMA J. Numer. Anal., 24 (2004), 587-604.
doi: 10.1093/imanum/24.4.587.![]() ![]() ![]() |
[23] |
G. J. Lord and T. Shardlow, Postprocessing for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 45 (2007), 870-899.
doi: 10.1137/050640138.![]() ![]() ![]() |
[24] |
H.-L. Ngo and D. Taguchi, Strong rate of convergence for the Euler-Maruyama approximation of stochastic differential equations with irregular coefficients, Math. Comp., 85 (2016), 1793-1819.
doi: 10.1090/mcom3042.![]() ![]() ![]() |
[25] |
H.-L. Ngo and D. Taguchi, On the Euler-Maruyama approximation for one-dimensional stochastic differential equations with irregular coefficients, arXiv: 1509.06532v1.
doi: 10.1093/imanum/drw058.![]() ![]() ![]() |
[26] |
O. M. Pamen and D. Taguchi, Strong rate of convergence for the Euler-Maruyama approximation of SDEs with Hölder continuous drift coefficient, arXiv: 1508.07513v1.
![]() |
[27] |
T. Shardlow, Numerical methods for stochastic parabolic PDEs, Numer. Funct. Anal. Optim., 20 (1999), 121-145.
doi: 10.1080/01630569908816884.![]() ![]() ![]() |
[28] |
F.-Y. Wang, Gradient estimate and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J.Differential Equations, 260 (2016), 2792-2829.
doi: 10.1016/j.jde.2015.10.020.![]() ![]() ![]() |
[29] |
F.-Y. Wang and X. Zhang, Degenerate SDEs in Hilbert spaces with rough drifts, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18 (2015), 25 pp.
doi: 10.1142/S0219025715500265.![]() ![]() ![]() |
[30] |
F.-Y. Wang and X. Zhang, Degenerate SDE with Hölder-Dini drift and non-Lipschitz noise coefficient, SIAM J. Math. Anal., 48 (2016), 2189-2226.
doi: 10.1137/15M1023671.![]() ![]() ![]() |
[31] |
X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients, Electron. J. Probab., 16 (2011), 1096-1116.
doi: 10.1214/EJP.v16-887.![]() ![]() ![]() |
[32] |
X. Zhang, Strong solutions of SDEs with singural drift and Sobolev diffusion coefficients, Stoch. Proc. Appl., 115 (2005), 1805-1818.
doi: 10.1016/j.spa.2005.06.003.![]() ![]() ![]() |
[33] |
A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Mat. Sbornik, 93 (1974), 129-149.
![]() ![]() |