-
Previous Article
Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions
- CPAA Home
- This Issue
-
Next Article
Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems
Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators
Department of Mathematics, Dogus University, Acıbadem, 34722, Kadiköy, Istanbul, Turkey |
In this paper we construct the spectral expansion for the differential operator generated in $L_{2}(-∞, ∞)$ by ordinary differential expression of arbitrary order with periodic complex-valued coefficients by introducing new concepts as essential spectral singularities and singular quasimomenta and using the series with parenthesis. Moreover, we find a criteria for which the spectral expansion coincides with the Gelfand expansion for the self-adjoint case.
References:
[1] |
M. G. Gasymov,
Spectral analysis of a class of second-order nonself-adjoint differential oper ators, Fankts. Anal. Prilozhen, 14 (1980), 14-19.
|
[2] |
I. M. Gelfand,
Expansion in series of eigenfunctions of an equation with periodic coefficients, Sov. Math. Dokl., 73 (1950), 1117-1120.
|
[3] |
F. Gesztesy and V. Tkachenko,
A criterion for Hill's operators to be spectral operators of scalar type, J. Analyse Math., 107 (2009), 287-353.
doi: 10.1007/s11854-009-0012-5. |
[4] |
D. C. McGarvey,
Differential operators with periodic coefficients in Lp(-∞, ∞), Journal of Mathematical Analysis and Applications, 11 (1965), 564-596.
doi: 10.1016/0022-247X(65)90105-8. |
[5] |
V. P. Mikhailov,
On the Riesz bases in L2(0, 1), Sov. Math. Dokl., 25 (1962), 981-984.
|
[6] |
M. A. Naimark, Linear Differential Operators, George G. Harrap, London, 1967. |
[7] |
F. S. Rofe-Beketov,
The spectrum of nonself-adjoint differential operators with periodic coef ficients, Sov. Math. Dokl., 4 (1963), 1563-1564.
|
[8] |
E. C. Titchmarsh, Eigenfunction Expansion (Part II), Oxford Univ. Press, 1958. |
[9] |
V. A. Tkachenko,
Eigenfunction expansions associated with one-dimensional periodic differ ential operators of order 2n, Funktsional. Anal. i Prilozhen, 41 (2007), 66-89.
doi: 10.1007/s10688-007-0005-z. |
[10] |
O. A. Veliev,
The spectrum and spectral singularities of differential operators with complex valued periodic coefficients, Differential Cprime Nye Uravneniya, 19 (1983), 1316-1324.
|
[11] |
O. A. Veliev,
The spectral resolution of the nonself-adjoint differential operators with periodic coefficients, Differential Cprime Nye Uravneniya, 22 (1986), 2052-2059.
|
[12] |
O. A. Veliev,
Spectral expansion for a non-self-adjoint periodic differential operator, Russian Journal of Mathematical Physics, 13 (2006), 101-110.
doi: 10.1134/S1061920806010109. |
[13] |
O. A. Veliev, Uniform convergence of the spectral expansion for a differential operator with periodic matrix coefficients, Boundary Value Problems, Volume 2008, Article ID 628973, 22 pp. (2008). |
[14] |
O. A. Veliev,
Asymptotic analysis of non-self-adjoint Hill's operators, Central European Jour nal of Mathematics, 11 (2013), 2234-2256.
doi: 10.2478/s11533-013-0305-x. |
[15] |
O. A. Veliev,
On the spectral singularities and spectrality of the Hill operator, Operators and Matrices, 10 (2016), 57-71.
doi: 10.7153/oam-10-05. |
[16] |
O. A. Veliev,
Essential spectral singularities and the spectral expansion for the Hill operator, Communication on Pure and Applied Analysis, 16 (2017), 2227-2251.
doi: 10.3934/cpaa.2017110. |
show all references
References:
[1] |
M. G. Gasymov,
Spectral analysis of a class of second-order nonself-adjoint differential oper ators, Fankts. Anal. Prilozhen, 14 (1980), 14-19.
|
[2] |
I. M. Gelfand,
Expansion in series of eigenfunctions of an equation with periodic coefficients, Sov. Math. Dokl., 73 (1950), 1117-1120.
|
[3] |
F. Gesztesy and V. Tkachenko,
A criterion for Hill's operators to be spectral operators of scalar type, J. Analyse Math., 107 (2009), 287-353.
doi: 10.1007/s11854-009-0012-5. |
[4] |
D. C. McGarvey,
Differential operators with periodic coefficients in Lp(-∞, ∞), Journal of Mathematical Analysis and Applications, 11 (1965), 564-596.
doi: 10.1016/0022-247X(65)90105-8. |
[5] |
V. P. Mikhailov,
On the Riesz bases in L2(0, 1), Sov. Math. Dokl., 25 (1962), 981-984.
|
[6] |
M. A. Naimark, Linear Differential Operators, George G. Harrap, London, 1967. |
[7] |
F. S. Rofe-Beketov,
The spectrum of nonself-adjoint differential operators with periodic coef ficients, Sov. Math. Dokl., 4 (1963), 1563-1564.
|
[8] |
E. C. Titchmarsh, Eigenfunction Expansion (Part II), Oxford Univ. Press, 1958. |
[9] |
V. A. Tkachenko,
Eigenfunction expansions associated with one-dimensional periodic differ ential operators of order 2n, Funktsional. Anal. i Prilozhen, 41 (2007), 66-89.
doi: 10.1007/s10688-007-0005-z. |
[10] |
O. A. Veliev,
The spectrum and spectral singularities of differential operators with complex valued periodic coefficients, Differential Cprime Nye Uravneniya, 19 (1983), 1316-1324.
|
[11] |
O. A. Veliev,
The spectral resolution of the nonself-adjoint differential operators with periodic coefficients, Differential Cprime Nye Uravneniya, 22 (1986), 2052-2059.
|
[12] |
O. A. Veliev,
Spectral expansion for a non-self-adjoint periodic differential operator, Russian Journal of Mathematical Physics, 13 (2006), 101-110.
doi: 10.1134/S1061920806010109. |
[13] |
O. A. Veliev, Uniform convergence of the spectral expansion for a differential operator with periodic matrix coefficients, Boundary Value Problems, Volume 2008, Article ID 628973, 22 pp. (2008). |
[14] |
O. A. Veliev,
Asymptotic analysis of non-self-adjoint Hill's operators, Central European Jour nal of Mathematics, 11 (2013), 2234-2256.
doi: 10.2478/s11533-013-0305-x. |
[15] |
O. A. Veliev,
On the spectral singularities and spectrality of the Hill operator, Operators and Matrices, 10 (2016), 57-71.
doi: 10.7153/oam-10-05. |
[16] |
O. A. Veliev,
Essential spectral singularities and the spectral expansion for the Hill operator, Communication on Pure and Applied Analysis, 16 (2017), 2227-2251.
doi: 10.3934/cpaa.2017110. |
[1] |
David Damanik, Zheng Gan. Spectral properties of limit-periodic Schrödinger operators. Communications on Pure and Applied Analysis, 2011, 10 (3) : 859-871. doi: 10.3934/cpaa.2011.10.859 |
[2] |
Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure and Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1 |
[3] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[4] |
Paul Loya and Jinsung Park. On gluing formulas for the spectral invariants of Dirac type operators. Electronic Research Announcements, 2005, 11: 1-11. |
[5] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[6] |
O. A. Veliev. On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1537-1562. doi: 10.3934/cpaa.2020077 |
[7] |
O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110 |
[8] |
Vesselin Petkov, Luchezar Stoyanov. Spectral estimates for Ruelle operators with two parameters and sharp large deviations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6391-6417. doi: 10.3934/dcds.2019277 |
[9] |
Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469 |
[10] |
Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139 |
[11] |
Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1961-1986. doi: 10.3934/cpaa.2021054 |
[12] |
Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083 |
[13] |
Pierre Patie, Aditya Vaidyanathan. A spectral theoretical approach for hypocoercivity applied to some degenerate hypoelliptic, and non-local operators. Kinetic and Related Models, 2020, 13 (3) : 479-506. doi: 10.3934/krm.2020016 |
[14] |
Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147 |
[15] |
Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282 |
[16] |
Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Computational networks and systems-homogenization of self-adjoint differential operators in variational form on periodic networks and micro-architectured systems. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 139-169. doi: 10.3934/naco.2017010 |
[17] |
Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112 |
[18] |
Nuno Costa Dias, Andrea Posilicano, João Nuno Prata. Self-adjoint, globally defined Hamiltonian operators for systems with boundaries. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1687-1706. doi: 10.3934/cpaa.2011.10.1687 |
[19] |
Abdallah El Hamidi, Aziz Hamdouni, Marwan Saleh. On eigenelements sensitivity for compact self-adjoint operators and applications. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 445-455. doi: 10.3934/dcdss.2016006 |
[20] |
Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure and Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]