In this paper, we study the following quasilinear Schrödinger equation
$\begin{equation*}-Δ u+V(x)u-Δ(u^2)u = g(u),\,\, x∈\mathbb{R}^N,\end{equation*}$
where $ N>4, 2^* = \frac{2N}{N-2}, V: \mathbb{R}^N \to \mathbb{R}$ satisfies suitable assumptions. Unlike $ g∈ \mathcal{C}^1(\mathbb{R},\mathbb{R})$, we only need to assume that $ g∈ \mathcal{C}(\mathbb{R},\mathbb{R})$. By using a change of variable, we obtain the existence of ground state solutions with general critical growth. Our results extend some known results.
Citation: |
[1] |
V. Ambrosio and G. M. Figueiredo, Ground state solutions for a fractional Schrödinger equation with critical growth, Asymptotic Anal., 105 (2017), 159-191.
doi: 10.3233/ASY-171438.![]() ![]() ![]() |
[2] |
F. G. Bass and N. N. Nasanov, Nonlinear electromagnetic-spin waves, Phys. Rep., 189 (1990), 165-223.
![]() |
[3] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
[4] |
J. H. Chen, X. H. Tang and B. T. Cheng, Non-Nehari manifold method for a class of generalized quasilinear Schrödinger equations, Appl. Math. Lett., 74 (2017), 20-26.
doi: 10.1016/j.aml.2017.04.032.![]() ![]() ![]() |
[5] |
J. H. Chen, X. H. Tang and B. T. Cheng, Ground states for a class of generalized quasilinear Schrödinger equations in $ \mathbb{R}^N$, Mediterr. J. Math., 14 (2017), 190.
doi: 10.1007/s00009-017-0990-y.![]() ![]() ![]() |
[6] |
J. H. Chen, X. H. Tang and B. T. Cheng, Existence of ground state solutions for quasilinear Schrödinger equations with super-quadratic condition, Appl. Math. Lett., 79 (2018), 27-33.
doi: 10.1016/j.aml.2017.11.007.![]() ![]() ![]() |
[7] |
J. H. Chen, X. H. Tang and B. T. Cheng, Ground state solutions for a class of quasilinear Schrödinger equations via Pohažaev manifold, Submitted.
doi: 10.3934/cpaa.2018054.![]() ![]() ![]() |
[8] |
S. T. Chen and X. H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete Contin. Dyn. Syst. A, 38 (2018), 2333-2348.
doi: 10.3934/dcds.2018096.![]() ![]() ![]() |
[9] |
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008.![]() ![]() ![]() |
[10] |
S. Cuccagna, On instability of excited states of the nonlinear Schrödinger equation, Phys. D, 238 (2009), 38-54.
doi: 10.1016/j.physd.2008.08.010.![]() ![]() ![]() |
[11] |
Y. Deng and W. Huang, Ground state solutions for a quasilinear Elliptic equations with critical growth, Discrete Contin. Dyn. Syst. A, 37 (2017), 4213-4230.
doi: 10.3934/dcds.2017179.![]() ![]() ![]() |
[12] |
Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, J. Math. Phys., 54 (2013), 011504.
doi: 10.1063/1.4774153.![]() ![]() ![]() |
[13] |
Y. Deng, S. Peng and S. Yan, Positive solition solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.
doi: 10.1016/j.jde.2014.09.006.![]() ![]() ![]() |
[14] |
Y. Deng, S. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.
doi: 10.1016/j.jde.2015.09.021.![]() ![]() ![]() |
[15] |
J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.
doi: 10.1016/j.jde.2009.11.030.![]() ![]() ![]() |
[16] |
J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var. Partial Differential Equations, 38 (2010), 275-315.
doi: 10.1007/s00526-009-0286-6.![]() ![]() ![]() |
[17] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed. Berlin: Springer, 1983.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
[18] |
X. He, A. Qian and W. Zou, Existence and concentration of positive solutions for quasilinear equations with critical growth, Nonlinearity, 26 (2013), 3137-3168.
doi: 10.1088/0951-7715/26/12/3137.![]() ![]() ![]() |
[19] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $ \mathbb{R}^N$, Proc. R. Soc. Edinburgh Sect A., 129 (1999), 787-809.
doi: 10.1017/S0308210500013147.![]() ![]() ![]() |
[20] |
L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $ \mathbb{R}^N$ autonomous at infinity, ESAIM Control Optim. Calc. Var., 7 (2002), 597-614.
doi: 10.1051/cocv:2002068.![]() ![]() ![]() |
[21] |
S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.
doi: 10.1143/JPSJ.50.3801.![]() ![]() ![]() |
[22] |
J. Q. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations, Ⅱ, J. Differential Equations, 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5.![]() ![]() ![]() |
[23] |
J. Q. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901.
doi: 10.1081/PDE-120037335.![]() ![]() ![]() |
[24] |
J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Proc. Amer. Math. Soc., 131 (2002), 441-448.
doi: 10.1090/S0002-9939-02-06783-7.![]() ![]() ![]() |
[25] |
X. Q. Liu, J. Q. Liu and Z. Q. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 46 (2013), 641-669.
doi: 10.1007/s00526-012-0497-0.![]() ![]() ![]() |
[26] |
X. Q. Liu, J. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.
doi: 10.1016/j.jde.2012.09.006.![]() ![]() ![]() |
[27] |
Z. Liu and S. Guo, On ground state solutions for the Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 412 (2014), 435-448.
doi: 10.1016/j.jmaa.2013.10.066.![]() ![]() ![]() |
[28] |
V. G. Makhankov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory, Phys. Rep., 104 (1984), 1-86.
doi: 10.1016/0370-1573(84)90106-6.![]() ![]() ![]() |
[29] |
A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $ \mathbb{R}^N$, J. Differential Equations, 229 (2006), 570-587.
doi: 10.1016/j.jde.2006.07.001.![]() ![]() ![]() |
[30] |
A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations, Nonlinearity, 19 (2006), 937-957.
doi: 10.1088/0951-7715/19/4/009.![]() ![]() ![]() |
[31] |
M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equation, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.
doi: 10.1007/s005260100105.![]() ![]() ![]() |
[32] |
Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. Theory Methods Appl., 80 (2013), 194-201.
doi: 10.1016/j.na.2012.10.005.![]() ![]() ![]() |
[33] |
E. A. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with crirical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.
doi: 10.1007/s00526-009-0299-1.![]() ![]() ![]() |
[34] |
X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohožaev type for Schröinger Poisson problems with general potentials, Discrete Contin. Dyn. Syst. A, 37 (2017), 4973-5002.
doi: 10.3934/dcds.2017214.![]() ![]() ![]() |
[35] |
X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ., (2018), 1-15.
![]() |
[36] |
Y. Wang and W. Zou, Bound states to critical quasilinear Schrödinger equations, Nonlinear Differ. Equ. Appl., 19 (2012), 19-47.
doi: 10.1007/s00030-011-0116-3.![]() ![]() ![]() |
[37] |
M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[38] |
H. Ye and G. Li, Concentrating solition solutions for quasilinear Schrödinger equations involving critical Sobolev exponents, Discrete Contin. Dyn. Syst. A, 36 (2016), 731-762.
doi: 10.3934/dcds.2016.36.731.![]() ![]() ![]() |
[39] |
J. Zhang, W. Zhang and X. H. Tang, Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst. A, 37 (2017), 4565-4583.
doi: 10.3934/dcds.2017195.![]() ![]() ![]() |
[40] |
J. Zhang and W. Zou, The critical case for a Berestycki-Lions theorem, Sci. China Math., 14 (2014), 541-554.
doi: 10.1007/s11425-013-4687-9.![]() ![]() ![]() |
[41] |
X. Zhu and D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (1989), 307-328.
doi: 10.1016/S0252-9602(18)30356-4.![]() ![]() ![]() |