March  2019, 18(2): 689-708. doi: 10.3934/cpaa.2019034

On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation

Institut de Mathématiques de Toulouse UMR5219, Université Toulouse CNRS, 31062 Toulouse Cedex 9, France

Received  January 2018 Revised  May 2018 Published  October 2018

In this paper we study dynamical properties of blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. We establish a profile decomposition and a compactness lemma related to the equation. As a result, we obtain the $L^2$-concentration and the limiting profile with minimal mass of blow-up solutions.

Citation: Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034
References:
[1]

J. BellazziniV. Georgiev and N. Visciglia, Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension, Math. Ann., 371 (2018), 707-740.  doi: 10.1007/s00208-018-1666-z.  Google Scholar

[2]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.  Google Scholar

[3]

D. CaiJ. MajdaD. W. McLaughlin and E. G. Tabak, Dispersive wave turbulence in one dimension, Phys. D: Nonlinear Phenomena, 152-153 (2001), 551-572.  doi: 10.1016/S0167-2789(01)00193-2.  Google Scholar

[4]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.   Google Scholar

[5]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.  Google Scholar

[6]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[7]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödigner equation with Hartree type nonlinearity, Funkcial. Ekvac., 56 (2013), 193-224.  doi: 10.1619/fesi.56.193.  Google Scholar

[8]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282.  doi: 10.3934/cpaa.2014.13.1267.  Google Scholar

[9]

Y. ChoG. Hwang and Y. Shim, Energy concentration of the focusing energy-critical fNLS, J. Math. Anal. Appl., 437 (2016), 310-329.  doi: 10.1016/j.jmaa.2015.12.060.  Google Scholar

[10]

M. Christ and I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[11]

V. D. Dinh, Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces, Int. J. Appl. Math., 31 (2018), 483-525.  doi: 10.12732/ijam.v31i4.1.  Google Scholar

[12]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.  doi: 10.1515/form.2011.009.  Google Scholar

[13]

B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1785-1804.  doi: 10.3934/cpaa.2018085.  Google Scholar

[14]

R. L. Frank and E. Lenzmann, Uniqueness of nonlinear gound states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[15]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1725.  doi: 10.1002/cpa.21591.  Google Scholar

[16]

J. FröhlichG. Jonsson and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.  doi: 10.1007/s00220-007-0272-9.  Google Scholar

[17]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[18]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrödinger equation in the radial case, preprint, arXiv: 1310.8616. Google Scholar

[19]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[20]

Q. Guo and S. Zhu, Sharp criteria of scattering for the fractional NLS, preprint, arXiv: 1706.02549. Google Scholar

[21]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[22]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equation revisited, Int. Math. Res. Not., 46 (2005), 2815-2828.  doi: 10.1155/IMRN.2005.2815.  Google Scholar

[23]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140364. doi: 10.1098/rspa.2014.0364.  Google Scholar

[24]

J. KriegerE. Lenzmann and P. Raphaël, Non dispersive solutions for the $L^2$ critical Half-Wave equation, Arch. Rational Mech. Anal., 209 (2013), 61-129.  doi: 10.1007/s00205-013-0620-1.  Google Scholar

[25]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equation in one dimension, J. Funct. Anal., 266 (2014), 139-176.  doi: 10.1016/j.jfa.2013.08.027.  Google Scholar

[26]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the gereralized Korteveg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[27]

Y. Ke, Remark on the Strichartz estimates in the radial case, J. Math. Anal. Appl., 387 (2012), 857-861.  doi: 10.1016/j.jmaa.2011.09.039.  Google Scholar

[28]

K. KirkpatrickE. Lenzmann and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317 (2013), 563-591.  doi: 10.1007/s00220-012-1621-x.  Google Scholar

[29]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[30]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214.  doi: 10.1016/0022-0396(90)90075-Z.  Google Scholar

[31]

F. Merle, On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass, Comm. Pure Appl. Math., 45 (1992), 203-254.  doi: 10.1002/cpa.3160450204.  Google Scholar

[32]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., 69 (1993), 427-454.  doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[33]

F. Merle and P. Raphaël, On universality of blow-up profile for $L^2$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[34]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[35]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^2$-critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006), 37-90.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[36]

F. Merle and P. Raphaël, Blow up of critical norm for some radial $L^2$ super critical nonlinear Schrödinger equations, Amer. J. Math., 130 (2008), 945-978.  doi: 10.1353/ajm.0.0012.  Google Scholar

[37]

H. Nava, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math., 52 (1999), 193-207.  doi: 10.1002/(SICI)1097-0312(199902)52:2<193::AID-CPA2>3.0.CO;2-3.  Google Scholar

[38]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[39]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496.  doi: 10.1090/S0002-9939-1991-1045145-5.  Google Scholar

[40]

T. Ozawa and N. Visciglia, An improvement on the Brezis-Gallouët technique for 2D NLS and 1D half-wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1069-1079.  doi: 10.1016/j.anihpc.2015.03.004.  Google Scholar

[41]

C. Peng and Q. Shi, Stability of standing waves for the fractional nonlinear Schrödinger equation, J. Math. Phys., 59 (2018), 011508. doi: 10.1063/1.5021689.  Google Scholar

[42]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.  Google Scholar

[43]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106, AMS, 2006.  Google Scholar

[44]

Y. Tsutsumi, Rate of $L^2$-concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724.  doi: 10.1016/0362-546X(90)90088-X.  Google Scholar

[45]

W. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986), 545-565.  doi: 10.1080/03605308608820435.  Google Scholar

[46]

S. Zhu, On the blow-up solutions for the nonlinear fractional Schrödinger equation, J. Differential Equations, 261 (2016), 1506-1531.  doi: 10.1016/j.jde.2016.04.007.  Google Scholar

show all references

References:
[1]

J. BellazziniV. Georgiev and N. Visciglia, Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension, Math. Ann., 371 (2018), 707-740.  doi: 10.1007/s00208-018-1666-z.  Google Scholar

[2]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.  Google Scholar

[3]

D. CaiJ. MajdaD. W. McLaughlin and E. G. Tabak, Dispersive wave turbulence in one dimension, Phys. D: Nonlinear Phenomena, 152-153 (2001), 551-572.  doi: 10.1016/S0167-2789(01)00193-2.  Google Scholar

[4]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.   Google Scholar

[5]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.  Google Scholar

[6]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[7]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödigner equation with Hartree type nonlinearity, Funkcial. Ekvac., 56 (2013), 193-224.  doi: 10.1619/fesi.56.193.  Google Scholar

[8]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282.  doi: 10.3934/cpaa.2014.13.1267.  Google Scholar

[9]

Y. ChoG. Hwang and Y. Shim, Energy concentration of the focusing energy-critical fNLS, J. Math. Anal. Appl., 437 (2016), 310-329.  doi: 10.1016/j.jmaa.2015.12.060.  Google Scholar

[10]

M. Christ and I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[11]

V. D. Dinh, Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces, Int. J. Appl. Math., 31 (2018), 483-525.  doi: 10.12732/ijam.v31i4.1.  Google Scholar

[12]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.  doi: 10.1515/form.2011.009.  Google Scholar

[13]

B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1785-1804.  doi: 10.3934/cpaa.2018085.  Google Scholar

[14]

R. L. Frank and E. Lenzmann, Uniqueness of nonlinear gound states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[15]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1725.  doi: 10.1002/cpa.21591.  Google Scholar

[16]

J. FröhlichG. Jonsson and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.  doi: 10.1007/s00220-007-0272-9.  Google Scholar

[17]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[18]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrödinger equation in the radial case, preprint, arXiv: 1310.8616. Google Scholar

[19]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[20]

Q. Guo and S. Zhu, Sharp criteria of scattering for the fractional NLS, preprint, arXiv: 1706.02549. Google Scholar

[21]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[22]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equation revisited, Int. Math. Res. Not., 46 (2005), 2815-2828.  doi: 10.1155/IMRN.2005.2815.  Google Scholar

[23]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140364. doi: 10.1098/rspa.2014.0364.  Google Scholar

[24]

J. KriegerE. Lenzmann and P. Raphaël, Non dispersive solutions for the $L^2$ critical Half-Wave equation, Arch. Rational Mech. Anal., 209 (2013), 61-129.  doi: 10.1007/s00205-013-0620-1.  Google Scholar

[25]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equation in one dimension, J. Funct. Anal., 266 (2014), 139-176.  doi: 10.1016/j.jfa.2013.08.027.  Google Scholar

[26]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the gereralized Korteveg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[27]

Y. Ke, Remark on the Strichartz estimates in the radial case, J. Math. Anal. Appl., 387 (2012), 857-861.  doi: 10.1016/j.jmaa.2011.09.039.  Google Scholar

[28]

K. KirkpatrickE. Lenzmann and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317 (2013), 563-591.  doi: 10.1007/s00220-012-1621-x.  Google Scholar

[29]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[30]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214.  doi: 10.1016/0022-0396(90)90075-Z.  Google Scholar

[31]

F. Merle, On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass, Comm. Pure Appl. Math., 45 (1992), 203-254.  doi: 10.1002/cpa.3160450204.  Google Scholar

[32]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., 69 (1993), 427-454.  doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[33]

F. Merle and P. Raphaël, On universality of blow-up profile for $L^2$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[34]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[35]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^2$-critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006), 37-90.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[36]

F. Merle and P. Raphaël, Blow up of critical norm for some radial $L^2$ super critical nonlinear Schrödinger equations, Amer. J. Math., 130 (2008), 945-978.  doi: 10.1353/ajm.0.0012.  Google Scholar

[38]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[39]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496.  doi: 10.1090/S0002-9939-1991-1045145-5.  Google Scholar

[40]

T. Ozawa and N. Visciglia, An improvement on the Brezis-Gallouët technique for 2D NLS and 1D half-wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1069-1079.  doi: 10.1016/j.anihpc.2015.03.004.  Google Scholar

[41]

C. Peng and Q. Shi, Stability of standing waves for the fractional nonlinear Schrödinger equation, J. Math. Phys., 59 (2018), 011508. doi: 10.1063/1.5021689.  Google Scholar

[42]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.  Google Scholar

[43]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106, AMS, 2006.  Google Scholar

[44]

Y. Tsutsumi, Rate of $L^2$-concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724.  doi: 10.1016/0362-546X(90)90088-X.  Google Scholar

[45]

W. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986), 545-565.  doi: 10.1080/03605308608820435.  Google Scholar

[46]

S. Zhu, On the blow-up solutions for the nonlinear fractional Schrödinger equation, J. Differential Equations, 261 (2016), 1506-1531.  doi: 10.1016/j.jde.2016.04.007.  Google Scholar

Table 1.  Local well-posedness (LWP) in $H^s$ for NLFS
$s$$\alpha$LWP
$d=1$$\frac{1}{3}<s<\frac{1}{2}$$0<\alpha<\frac{4s}{1-2s}$$u_0$ non-radial
$d=1$$\frac{1}{2}<s<1$$0<\alpha<\infty$$u_0$ non-radial
$d=2$$\frac{1}{2}<s<1$$0<\alpha<\frac{4s}{2-2s}$$u_0$ non-radial
$d=3$$\frac{3}{5}\leq s\leq \frac{3}{4}$$0<\alpha<\frac{4s}{3-2s}$$u_0$ radial
$d=3$$\frac{3}{4}<s< 1$$0<\alpha<\frac{4s}{3-2s}$$u_0$ non-radial
$d\geq 4$$\frac{d}{2d-1}\leq s<1$$0<\alpha<\frac{4s}{d-2s}$$u_0$ radial
$s$$\alpha$LWP
$d=1$$\frac{1}{3}<s<\frac{1}{2}$$0<\alpha<\frac{4s}{1-2s}$$u_0$ non-radial
$d=1$$\frac{1}{2}<s<1$$0<\alpha<\infty$$u_0$ non-radial
$d=2$$\frac{1}{2}<s<1$$0<\alpha<\frac{4s}{2-2s}$$u_0$ non-radial
$d=3$$\frac{3}{5}\leq s\leq \frac{3}{4}$$0<\alpha<\frac{4s}{3-2s}$$u_0$ radial
$d=3$$\frac{3}{4}<s< 1$$0<\alpha<\frac{4s}{3-2s}$$u_0$ non-radial
$d\geq 4$$\frac{d}{2d-1}\leq s<1$$0<\alpha<\frac{4s}{d-2s}$$u_0$ radial
[1]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[2]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[3]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[4]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021052

[5]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[6]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[7]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032

[8]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[9]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[10]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[11]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[12]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[13]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[14]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[16]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[17]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[18]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[19]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[20]

Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021156

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (169)
  • HTML views (200)
  • Cited by (6)

Other articles
by authors

[Back to Top]