|
J. Bellazzini
, V. Georgiev
and N. Visciglia
, Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension, Math. Ann., 371 (2018)
, 707-740.
doi: 10.1007/s00208-018-1666-z.
|
|
T. Boulenger
, D. Himmelsbach
and E. Lenzmann
, Blowup for fractional NLS, J. Funct. Anal., 271 (2016)
, 2569-2603.
doi: 10.1016/j.jfa.2016.08.011.
|
|
D. Cai
, J. Majda
, D. W. McLaughlin
and E. G. Tabak
, Dispersive wave turbulence in one dimension, Phys. D: Nonlinear Phenomena, 152-153 (2001)
, 551-572.
doi: 10.1016/S0167-2789(01)00193-2.
|
|
Y. Cho
and S. Lee
, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013)
, 991-1020.
|
|
Y. Cho
and T. Ozawa
, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006)
, 1060-1074.
doi: 10.1137/060653688.
|
|
Y. Cho
, T. Ozawa
and S. Xia
, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011)
, 1121-1128.
doi: 10.3934/cpaa.2011.10.1121.
|
|
Y. Cho
, H. Hajaiej
, G. Hwang
and T. Ozawa
, On the Cauchy problem of fractional Schrödigner equation with Hartree type nonlinearity, Funkcial. Ekvac., 56 (2013)
, 193-224.
doi: 10.1619/fesi.56.193.
|
|
Y. Cho
, H. Hajaiej
, G. Hwang
and T. Ozawa
, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014)
, 1267-1282.
doi: 10.3934/cpaa.2014.13.1267.
|
|
Y. Cho
, G. Hwang
and Y. Shim
, Energy concentration of the focusing energy-critical fNLS, J. Math. Anal. Appl., 437 (2016)
, 310-329.
doi: 10.1016/j.jmaa.2015.12.060.
|
|
M. Christ
and I. Weinstein
, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991)
, 87-109.
doi: 10.1016/0022-1236(91)90103-C.
|
|
V. D. Dinh
, Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces, Int. J. Appl. Math., 31 (2018)
, 483-525.
doi: 10.12732/ijam.v31i4.1.
|
|
D. Fang
and C. Wang
, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011)
, 181-205.
doi: 10.1515/form.2011.009.
|
|
B. Feng
, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018)
, 1785-1804.
doi: 10.3934/cpaa.2018085.
|
|
R. L. Frank
and E. Lenzmann
, Uniqueness of nonlinear gound states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013)
, 261-318.
doi: 10.1007/s11511-013-0095-9.
|
|
R. L. Frank
, E. Lenzmann
and L. Silvestre
, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016)
, 1671-1725.
doi: 10.1002/cpa.21591.
|
|
J. Fröhlich
, G. Jonsson
and E. Lenzmann
, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007)
, 1-30.
doi: 10.1007/s00220-007-0272-9.
|
|
R. T. Glassey
, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977)
, 1794-1797.
doi: 10.1063/1.523491.
|
|
Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrödinger equation in the radial case, preprint, arXiv: 1310.8616.
|
|
Z. Guo
and Y. Wang
, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014)
, 1-38.
doi: 10.1007/s11854-014-0025-6.
|
|
Q. Guo and S. Zhu, Sharp criteria of scattering for the fractional NLS, preprint, arXiv: 1706.02549.
|
|
Y. Hong
and Y. Sire
, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015)
, 2265-2282.
doi: 10.3934/cpaa.2015.14.2265.
|
|
T. Hmidi
and S. Keraani
, Blowup theory for the critical nonlinear Schrödinger equation revisited, Int. Math. Res. Not., 46 (2005)
, 2815-2828.
doi: 10.1155/IMRN.2005.2815.
|
|
C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140364.
doi: 10.1098/rspa.2014.0364.
|
|
J. Krieger
, E. Lenzmann
and P. Raphaël
, Non dispersive solutions for the $L^2$ critical Half-Wave equation, Arch. Rational Mech. Anal., 209 (2013)
, 61-129.
doi: 10.1007/s00205-013-0620-1.
|
|
A. D. Ionescu
and F. Pusateri
, Nonlinear fractional Schrödinger equation in one dimension, J. Funct. Anal., 266 (2014)
, 139-176.
doi: 10.1016/j.jfa.2013.08.027.
|
|
C. E. Kenig
, G. Ponce
and L. Vega
, Well-posedness and scattering results for the gereralized Korteveg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993)
, 527-620.
doi: 10.1002/cpa.3160460405.
|
|
Y. Ke
, Remark on the Strichartz estimates in the radial case, J. Math. Anal. Appl., 387 (2012)
, 857-861.
doi: 10.1016/j.jmaa.2011.09.039.
|
|
K. Kirkpatrick
, E. Lenzmann
and G. Staffilani
, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317 (2013)
, 563-591.
doi: 10.1007/s00220-012-1621-x.
|
|
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108.
doi: 10.1103/PhysRevE.66.056108.
|
|
F. Merle
and Y. Tsutsumi
, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990)
, 205-214.
doi: 10.1016/0022-0396(90)90075-Z.
|
|
F. Merle
, On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass, Comm. Pure Appl. Math., 45 (1992)
, 203-254.
doi: 10.1002/cpa.3160450204.
|
|
F. Merle
, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., 69 (1993)
, 427-454.
doi: 10.1215/S0012-7094-93-06919-0.
|
|
F. Merle
and P. Raphaël
, On universality of blow-up profile for $L^2$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004)
, 565-672.
doi: 10.1007/s00222-003-0346-z.
|
|
F. Merle
and P. Raphaël
, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005)
, 157-222.
doi: 10.4007/annals.2005.161.157.
|
|
F. Merle
and P. Raphaël
, On a sharp lower bound on the blow-up rate for the $L^2$-critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006)
, 37-90.
doi: 10.1090/S0894-0347-05-00499-6.
|
|
F. Merle
and P. Raphaël
, Blow up of critical norm for some radial $L^2$ super critical nonlinear Schrödinger equations, Amer. J. Math., 130 (2008)
, 945-978.
doi: 10.1353/ajm.0.0012.
|
|
H. Nava
, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math., 52 (1999)
, 193-207.
doi: 10.1002/(SICI)1097-0312(199902)52:2<193::AID-CPA2>3.0.CO;2-3.
|
|
T. Ogawa
and Y. Tsutsumi
, Blow-up of $H^1$ solutions for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991)
, 317-330.
doi: 10.1016/0022-0396(91)90052-B.
|
|
T. Ogawa
and Y. Tsutsumi
, Blow-up of $H^1$ solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991)
, 487-496.
doi: 10.1090/S0002-9939-1991-1045145-5.
|
|
T. Ozawa
and N. Visciglia
, An improvement on the Brezis-Gallouët technique for 2D NLS and 1D half-wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016)
, 1069-1079.
doi: 10.1016/j.anihpc.2015.03.004.
|
|
C. Peng and Q. Shi, Stability of standing waves for the fractional nonlinear Schrödinger equation, J. Math. Phys., 59 (2018), 011508.
doi: 10.1063/1.5021689.
|
|
C. Sun
, H. Wang
, X. Yao
and J. Zheng
, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 38 (2018)
, 2207-2228.
doi: 10.3934/dcds.2018091.
|
|
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106, AMS, 2006.
|
|
Y. Tsutsumi
, Rate of $L^2$-concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990)
, 719-724.
doi: 10.1016/0362-546X(90)90088-X.
|
|
W. I. Weinstein
, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986)
, 545-565.
doi: 10.1080/03605308608820435.
|
|
S. Zhu
, On the blow-up solutions for the nonlinear fractional Schrödinger equation, J. Differential Equations, 261 (2016)
, 1506-1531.
doi: 10.1016/j.jde.2016.04.007.
|