\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniqueness for Neumann problems for nonlinear elliptic equations

  • * Corresponding author

    * Corresponding author
Abstract Full Text(HTML) Related Papers Cited by
  • In the present paper we prove uniqueness results for solutions to a class of Neumann boundary value problems whose prototype is

    $\left\{ \begin{align} & -\text{div}({{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u)-\text{div}(c(x)|u{{|}^{p-2}}u)=f\ \ \ \text{in}\ \Omega , \\ & \left( {{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u+c(x)|u{{|}^{p-2}}u \right)\cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}=0\ \ \ \text{on}\ \partial \Omega , \\ \end{align} \right.$

    where $Ω$ is a bounded domain of $\mathbb{R}^{N}$, $N≥ 2$, with Lipschitz boundary, $ 1 < p < N$, $\underline n$ is the outer unit normal to $\partial Ω$, the datum $f$ belongs to $L^{(p^{*})'}(Ω)$ or to $L^{1}(Ω)$ and satisfies the compatibility condition $\int{{}}_Ω f \, dx = 0$. Finally the coefficient $c(x)$ belongs to an appropriate Lebesgue space.

    Mathematics Subject Classification: Primary: 35J25; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. Alvino , A. Cianchi , V. G. Maz'ya  and  A. Mercaldo , Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010) , 1017-1054.  doi: 10.1016/j.anihpc.2010.01.010.
      A. Alvino  and  A. Mercaldo , Nonlinear elliptic problems with $L^1$ data: an approach via symmetrization methods, Mediterr. J. Math., 5 (2008) , 173-185.  doi: 10.1007/s00009-008-0142-5.
      F. Andreu , J. M. Mazón , S. Segura de León  and  J. Toledo , Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7 (1997) , 183-213. 
      M. Artola , Sur une classe de problémes paraboliques quasi-linéaires, Boll. Un. Mat. Ital. B (6), 5 (1986) , 51-70. 
      G. Barles , G. Diaz  and  J. I. Diaz , Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non-Lipschitz nonlinearity, Comm. Partial Differential Equations, 17 (1992) , 1037-1050.  doi: 10.1080/03605309208820876.
      M. Ben Cheikh Ali  and  O. Guibé , Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl., 16 (2006) , 275-297. 
      P. Bénilan , L. Boccardo , T. Gallouët , R. Gariepy , M. Pierre  and  J. L. Vázquez , An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995) , 241-273. 
      M. F. Betta , O. Guibé  and  A. Mercaldo , Neumann problems for nonlinear elliptic equations with $L^1$ data, J. Differential Equations, 259 (2015) , 898-924.  doi: 10.1016/j.jde.2015.02.031.
      M. F. Betta , A. Mercaldo , F. Murat  and  M. M. Porzio , Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum, C. R. Math. Acad. Sci. Paris, 334 (2002) , 757-762.  doi: 10.1016/S1631-073X(02)02338-5.
      M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure, J. Math. Pures Appl. (9), 82 (2003), 90–124. Corrected reprint of J. Math. Pures Appl. (9), 8 (2002), 533–566. doi: 10.1016/S0021-7824(03)00006-0.
      L. Boccardo  and  T. Gallouët , Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989) , 149-169.  doi: 10.1016/0022-1236(89)90005-0.
      L. Boccardo  and  T. Gallouët , Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992) , 641-655.  doi: 10.1080/03605309208820857.
      L. Boccardo , T. Gallouët  and  F. Murat , Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris S´er. I Math., 315 (1992) , 1159-1164. 
      J. Chabrowski , On the Neumann problem with $L^1$ data, Colloq. Math., 107 (2007) , 301-316.  doi: 10.4064/cm107-2-10.
      M. Chipot  and  G. Michaille , Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (1989) , 137-166. 
      G. Dal Maso , F. Murat , L. Orsina  and  A. Prignet , Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999) , 741-808. 
      A. Dall'Aglio , Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4), 170 (1996) , 207-240.  doi: 10.1007/BF01758989.
      A. Decarreau , J. Liang  and  J.-M. Rakotoson , Trace imbeddings for $T$-sets and application to Neumann-Dirichlet problems with measures included in the boundary data, Ann. Fac. Sci. Toulouse Math. (6), 5 (1996) , 443-470. 
      J. Droniou , Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method, Adv. Differential Equations, 5 (2000) , 1341-1396. 
      J. Droniou  and  J.-L. Vázquez , Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009) , 413-434.  doi: 10.1007/s00526-008-0189-y.
      V. Ferone  and  A. Mercaldo , A second order derivation formula for functions defined by integrals, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998) , 549-554.  doi: 10.1016/S0764-4442(98)85005-2.
      V. Ferone  and  A. Mercaldo , Neumann problems and Steiner symmetrization, Comm. Partial Differential Equations, 30 (2005) , 1537-1553.  doi: 10.1080/03605300500299596.
      O. Guibé  and  A. Mercaldo , Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data, Potential Anal., 25 (2006) , 223-258.  doi: 10.1007/s11118-006-9011-7.
      O. Guibé  and  A. Mercaldo , Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data, Trans. Amer. Math. Soc., 360 (2008) , 643-669.  doi: 10.1090/S0002-9947-07-04139-6.
      J. Leray  and  J.-L. Lions , Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965) , 97-107. 
      J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, 1969.
      P. L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires, In manuscript.
      F. Murat, Equations elliptiques non linéaires avec second membre ${L}^1$ ou mesure, In Compte Rendus du 26ème Congrès d'Analyse Numérique, les Karellis, 1994.
      A. Prignet , Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure, Ann. Fac. Sci. Toulouse Math. (6), 6 (1997) , 297-318. 
      W. P. Ziemer, Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. doi: 10.1007/978-1-4612-1015-3.
  • 加载中
SHARE

Article Metrics

HTML views(523) PDF downloads(290) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return