Advanced Search
Article Contents
Article Contents

The properties of positive solutions to semilinear equations involving the fractional Laplacian

  • * Corresponding author

    * Corresponding author

The second author is supported by NSFC(No.11271166), NSF of Jiangsu Province(No. BK2010172), sponsored by Qing Lan Project

Abstract Full Text(HTML) Related Papers Cited by
  • Let $Ω$ be either a unit ball or a half space. Consider the following Dirichlet problem involving the fractional Laplacian

    $\left\{ \begin{array}{*{35}{l}} \begin{align} & {{(-\Delta )}^{\frac{\alpha }{2}}}u=f(u),\ \ \text{in}\ \ \Omega , \\ & u=0, ~~~~~~~~~~~~~~~~~~~~ \text{in}\ \ {{\Omega }^{c}},\ \\ \end{align} & \ & {} \\\end{array} \right.~~~~(1)$

    where $α$ is any real number between $zhongwenzy$ and $$. Under some conditions on $f$, we study the equivalent integral equation

    $ \begin{align}u(x) \ = \ \int{{}}_{ Ω}G(x, y)f(u(y))dy, \end{align}~~~~(2) $

    here $G(x, y)$ is the Green's function associated with the fractional Laplacian in the domain $Ω$. We apply the method of moving planes in integral forms to investigate the radial symmetry, monotonicity and regularity for positive solutions in the unit ball. Liouville type theorems-non-existence of positive solutions in the half space are also deduced.

    Mathematics Subject Classification: Primary: 35J60, 35B06, 35B09, 35B53, 45G10, 45M20.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.
      J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121 Cambridge University Press, Cambridge, 1996.
      K. Bogdan , The boundary Harnack principle for the fractional Laplacian, Studia Math., 123 (1997) , 43-80.  doi: 10.4064/sm-123-1-43-80.
      J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media, Statistical mechanics, models and physical applications, Physics reports, 195 (1990). doi: 10.1016/0370-1573(90)90099-N.
      L. Caffarelli  and  L. Silvestre , An extension problem related to the fractional Laplacian, Comm. in PDE, 32 (2007) , 1245-1260.  doi: 10.1080/03605300600987306.
      L. Caffarelli  and  L. Vasseur , Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. of Math. (2), 171 (2010) , 1903-1930.  doi: 10.4007/annals.2010.171.1903.
      X. Cabré  and  J. Tan , Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. in Math., 224 (2010) , 2052-2093.  doi: 10.1016/j.aim.2010.01.025.
      W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains, arXiv: 1309.7499v1.
      W. Chen , Y. Fang  and  R. Yang , Liouville theorems involving the fractional Laplacian on a half space, Adv. in Math., 274 (2015) , 167-198.  doi: 10.1016/j.aim.2014.12.013.
      W. Chen  and  C. Li , Regularity of solutions for a system of integral equation, Comm. Pure Appl. Anal., 4 (2005) , 1-8.  doi: 10.3934/cpaa.2005.4.1.
      W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS. Ser. Differ. Equ. Dyn. Syst. vol.4 2010.
      W. Chen , C. Li  and  B. Ou , Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006) , 330-343.  doi: 10.1002/cpa.20116.
      P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical Foundation of Turbulent Viscous Flows, Vol. 1871 of Lecture Notes in Math. 1–43, Springer, Berlin, 2006. doi: 10.1007/11545989_1.
      P. Felmer and Y. Wang, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Comm. Cont. Math., 16 (2014), 1350023. doi: 10.1142/S0219199713500235.
      Q. Guan , Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006) , 289-329.  doi: 10.1007/s00220-006-0054-9.
      T. Kulczycki , Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics, 17 (1997) , 339-364. 
      Yan Li, A semilinear equation involving the fractional Laplacian in $\mathbb{R}^{n}$, J. Math. Anal. Appl., 7 (2015),
      E. Nezza , G. Palatucci  and  E. Valdinoci , Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012) , 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
      L. Silvestre , Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007) , 67-112.  doi: 10.1002/cpa.20153.
      V. Tarasov  and  G. Zaslasvky , Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006) , 885-889.  doi: 10.1016/j.cnsns.2006.03.005.
      R. Zhuo , W. Chen , X. Cui  and  Z. Yuan , Radial symmetry of positive solutions to equations involving the fractional Laplacian, Discrete Contin.Dyn. Syst., 36 (2016) , 1125-1141.  doi: 10.3934/dcds.2016.36.1125.
  • 加载中

Article Metrics

HTML views(512) PDF downloads(412) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint