Let $Ω$ be either a unit ball or a half space. Consider the following Dirichlet problem involving the fractional Laplacian
$\left\{ \begin{array}{*{35}{l}} \begin{align} & {{(-\Delta )}^{\frac{\alpha }{2}}}u=f(u),\ \ \text{in}\ \ \Omega , \\ & u=0, ~~~~~~~~~~~~~~~~~~~~ \text{in}\ \ {{\Omega }^{c}},\ \\ \end{align} & \ & {} \\\end{array} \right.~~~~(1)$
where $α$ is any real number between $zhongwenzy$ and $$. Under some conditions on $f$, we study the equivalent integral equation
$ \begin{align}u(x) \ = \ \int{{}}_{ Ω}G(x, y)f(u(y))dy, \end{align}~~~~(2) $
here $G(x, y)$ is the Green's function associated with the fractional Laplacian in the domain $Ω$. We apply the method of moving planes in integral forms to investigate the radial symmetry, monotonicity and regularity for positive solutions in the unit ball. Liouville type theorems-non-existence of positive solutions in the half space are also deduced.
Citation: |
D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() ![]() |
|
J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121 Cambridge University Press, Cambridge, 1996.
![]() ![]() |
|
K. Bogdan
, The boundary Harnack principle for the fractional Laplacian, Studia Math., 123 (1997)
, 43-80.
doi: 10.4064/sm-123-1-43-80.![]() ![]() ![]() |
|
J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media, Statistical mechanics, models and physical applications, Physics reports, 195 (1990).
doi: 10.1016/0370-1573(90)90099-N.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. in PDE, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
L. Caffarelli
and L. Vasseur
, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. of Math. (2), 171 (2010)
, 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
|
X. Cabré
and J. Tan
, Positive solutions of nonlinear problems involving the square root of
the Laplacian, Adv. in Math., 224 (2010)
, 2052-2093.
doi: 10.1016/j.aim.2010.01.025.![]() ![]() ![]() |
|
W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains, arXiv: 1309.7499v1.
![]() |
|
W. Chen
, Y. Fang
and R. Yang
, Liouville theorems involving the fractional Laplacian on a
half space, Adv. in Math., 274 (2015)
, 167-198.
doi: 10.1016/j.aim.2014.12.013.![]() ![]() ![]() |
|
W. Chen
and C. Li
, Regularity of solutions for a system of integral equation, Comm. Pure Appl. Anal., 4 (2005)
, 1-8.
doi: 10.3934/cpaa.2005.4.1.![]() ![]() ![]() |
|
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS. Ser. Differ. Equ. Dyn. Syst. vol.4 2010.
![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006)
, 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
|
P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical
Foundation of Turbulent Viscous Flows, Vol. 1871 of Lecture Notes in Math. 1–43, Springer,
Berlin, 2006.
doi: 10.1007/11545989_1.![]() ![]() ![]() |
|
P. Felmer and Y. Wang, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Comm. Cont. Math., 16 (2014), 1350023.
doi: 10.1142/S0219199713500235.![]() ![]() ![]() |
|
Q. Guan
, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006)
, 289-329.
doi: 10.1007/s00220-006-0054-9.![]() ![]() ![]() |
|
T. Kulczycki
, Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics, 17 (1997)
, 339-364.
![]() ![]() |
|
Yan Li, A semilinear equation involving the fractional Laplacian in $\mathbb{R}^{n}$, J. Math. Anal. Appl., 7 (2015),
![]() |
|
E. Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007)
, 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
|
V. Tarasov
and G. Zaslasvky
, Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006)
, 885-889.
doi: 10.1016/j.cnsns.2006.03.005.![]() ![]() ![]() |
|
R. Zhuo
, W. Chen
, X. Cui
and Z. Yuan
, Radial symmetry of positive solutions to equations
involving the fractional Laplacian, Discrete Contin.Dyn. Syst., 36 (2016)
, 1125-1141.
doi: 10.3934/dcds.2016.36.1125.![]() ![]() ![]() |