# American Institute of Mathematical Sciences

May  2019, 18(3): 1227-1246. doi: 10.3934/cpaa.2019059

## Reaction of the fluid flow on time-dependent boundary perturbation

 Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia

Received  March 2018 Revised  July 2018 Published  November 2018

The aim of this paper is to investigate the effects of time-dependent boundary perturbation on the flow of a viscous fluid via asymptotic analysis. We start from a simple rectangular domain and then perturb the upper part of its boundary by the product of a small parameter $\varepsilon$ and some smooth function $h(x, t)$. The complete asymptotic expansion (in powers of $\varepsilon$) of the solution of the evolutionary Stokes system has been constructed. The convergence of the expansion has been proved providing the rigorous justification of the formally derived asymptotic model.

Citation: Eduard Marušić-Paloka, Igor Pažanin. Reaction of the fluid flow on time-dependent boundary perturbation. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1227-1246. doi: 10.3934/cpaa.2019059
##### References:
 [1] Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Computer. Phys, 147 (1998), 187-218.  doi: 10.1006/jcph.1998.6088. [2] K. Amedodji, G. Bayada and M. Chambat, On the unsteady Navier-Stokes equations in a time-moving domain with velocity-pressure boundary conditions, Nonlinear Anal. TMA, 49 (2002), 565-587.  doi: 10.1016/S0362-546X(01)00123-7. [3] G. Bayada and M. Chambat, New models in the theory of the hydrodynamic lubrication of rough surfaces, J. Tribol., 110 (1988), 402-407. [4] N. Benhaboucha, M. Chambat and I. Ciuperca, Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary, Quart. Appl. Math., 63 (2005), 369-400.  doi: 10.1090/S0033-569X-05-00963-3. [5] J. M. Bernard, Time-dependent Stokes and Navier-Stokes problems with boundary conditions, Nonlinear Anal. RWA, 4 (2003), 805-839.  doi: 10.1016/S1468-1218(03)00016-6. [6] D. Bresch, C. Choquet, L. Chupin, T. Colin and M. Gisclon, Roughness-induced effect at main order on the Reynolds approximation, SIAM Multiscale Model. Simul., 8 (2010), 997-1017.  doi: 10.1137/090754996. [7] S. Čanić, A. Mikelić, D. Lamponi and J. Tambača, Self-consistent effective equations modeling the blood flow in medium-to-large compliant arteries, SIAM Multiscale Model. Simul., 3 (2005), 559-596.  doi: 10.1137/030602605. [8] L. Chupin and S. Martin, Rigorous derivation of the thin film approximation with roughness-induced correctors, SIAM J. Math. Anal., 44 (2012), 3041-3070.  doi: 10.1137/110824371. [9] O. Damak and E. Hadj-Taieb, Waterhammer in flexible pipes, in Design and modeling of mechanical systems, Springer, 373-380, 2013. [10] D. Henry, Perturbation of the Boundary in Boundary-value Problems, London mathematical society lecture notes series, 318, Cambridge university press, 2005. doi: 10.1017/CBO9780511546730. [11] Jäger and A. W. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Equations, 170 (2001), 96-122.  doi: 10.1006/jdeq.2000.3814. [12] H. Le Dret, R. Lewandowski, D. Priour and F. Changenau, Numerical simulations of a cod end net Part 1: equilibrium in a uniform flow, Elasticity J., 76 (2004), 139-162.  doi: 10.1007/s10659-004-6668-2. [13] E. Marušić-Paloka, Effects of small boundary perturbation on flow of viscous fluid, ZAMM - J. Appl. Math. Mech., 96 (2016), 1103-1118.  doi: 10.1002/zamm.201500195. [14] E. Marušić-Paloka, I. Pažanin and M. Radulović, Flow of a micropolar fluid through a channel with small boundary perturbation, Z. Naturforsch. A, 71 (2016), 607-619. [15] E. Marušić-Paloka and I. Pažanin, On the Darcy-Brinkman flow through a channel with slightly perturbed boundary, Transp. Porous. Med., 117 (2017), 27-44.  doi: 10.1007/s11242-016-0818-4. [16] I. Pažanin, A note on the solute dispersion in a porous medium, B. Malays. Math. Sci. So., (2017).  doi: 10.1007/s40840-017-00508-6. [17] I. Pažanin and F. J. Suárez-Grau, Analysis of the thin film flow in a rough thin domain filled with micropolar fluid, Comput. Math. Appl., 68 (2014), 1915-1932.  doi: 10.1016/j.camwa.2014.10.003. [18] C. Peskin, Flow patterns around heart valves, J. Comput. Phys., 10 (1972), 252-271. [19] G. D. Rigby, L. Strezov, C. D. Rilley, S. D. Sciffer, J. A. Lucas and G. M. Evans, Hydrodynamics of fluid flow approaching a moving bounday, Metall. Mater. Trans. B, 31 (2000), 1117-1123. [20] A. Szeri, Fluid Film Lubrication, Cambridge university press, 2nd edition 2010.

show all references

##### References:
 [1] Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Computer. Phys, 147 (1998), 187-218.  doi: 10.1006/jcph.1998.6088. [2] K. Amedodji, G. Bayada and M. Chambat, On the unsteady Navier-Stokes equations in a time-moving domain with velocity-pressure boundary conditions, Nonlinear Anal. TMA, 49 (2002), 565-587.  doi: 10.1016/S0362-546X(01)00123-7. [3] G. Bayada and M. Chambat, New models in the theory of the hydrodynamic lubrication of rough surfaces, J. Tribol., 110 (1988), 402-407. [4] N. Benhaboucha, M. Chambat and I. Ciuperca, Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary, Quart. Appl. Math., 63 (2005), 369-400.  doi: 10.1090/S0033-569X-05-00963-3. [5] J. M. Bernard, Time-dependent Stokes and Navier-Stokes problems with boundary conditions, Nonlinear Anal. RWA, 4 (2003), 805-839.  doi: 10.1016/S1468-1218(03)00016-6. [6] D. Bresch, C. Choquet, L. Chupin, T. Colin and M. Gisclon, Roughness-induced effect at main order on the Reynolds approximation, SIAM Multiscale Model. Simul., 8 (2010), 997-1017.  doi: 10.1137/090754996. [7] S. Čanić, A. Mikelić, D. Lamponi and J. Tambača, Self-consistent effective equations modeling the blood flow in medium-to-large compliant arteries, SIAM Multiscale Model. Simul., 3 (2005), 559-596.  doi: 10.1137/030602605. [8] L. Chupin and S. Martin, Rigorous derivation of the thin film approximation with roughness-induced correctors, SIAM J. Math. Anal., 44 (2012), 3041-3070.  doi: 10.1137/110824371. [9] O. Damak and E. Hadj-Taieb, Waterhammer in flexible pipes, in Design and modeling of mechanical systems, Springer, 373-380, 2013. [10] D. Henry, Perturbation of the Boundary in Boundary-value Problems, London mathematical society lecture notes series, 318, Cambridge university press, 2005. doi: 10.1017/CBO9780511546730. [11] Jäger and A. W. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Equations, 170 (2001), 96-122.  doi: 10.1006/jdeq.2000.3814. [12] H. Le Dret, R. Lewandowski, D. Priour and F. Changenau, Numerical simulations of a cod end net Part 1: equilibrium in a uniform flow, Elasticity J., 76 (2004), 139-162.  doi: 10.1007/s10659-004-6668-2. [13] E. Marušić-Paloka, Effects of small boundary perturbation on flow of viscous fluid, ZAMM - J. Appl. Math. Mech., 96 (2016), 1103-1118.  doi: 10.1002/zamm.201500195. [14] E. Marušić-Paloka, I. Pažanin and M. Radulović, Flow of a micropolar fluid through a channel with small boundary perturbation, Z. Naturforsch. A, 71 (2016), 607-619. [15] E. Marušić-Paloka and I. Pažanin, On the Darcy-Brinkman flow through a channel with slightly perturbed boundary, Transp. Porous. Med., 117 (2017), 27-44.  doi: 10.1007/s11242-016-0818-4. [16] I. Pažanin, A note on the solute dispersion in a porous medium, B. Malays. Math. Sci. So., (2017).  doi: 10.1007/s40840-017-00508-6. [17] I. Pažanin and F. J. Suárez-Grau, Analysis of the thin film flow in a rough thin domain filled with micropolar fluid, Comput. Math. Appl., 68 (2014), 1915-1932.  doi: 10.1016/j.camwa.2014.10.003. [18] C. Peskin, Flow patterns around heart valves, J. Comput. Phys., 10 (1972), 252-271. [19] G. D. Rigby, L. Strezov, C. D. Rilley, S. D. Sciffer, J. A. Lucas and G. M. Evans, Hydrodynamics of fluid flow approaching a moving bounday, Metall. Mater. Trans. B, 31 (2000), 1117-1123. [20] A. Szeri, Fluid Film Lubrication, Cambridge university press, 2nd edition 2010.
 [1] Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039 [2] Svetlana Matculevich, Pekka Neittaanmäki, Sergey Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2659-2677. doi: 10.3934/dcds.2015.35.2659 [3] Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations and Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023 [4] Mourad Bellassoued, Oumaima Ben Fraj. Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements. Inverse Problems and Imaging, 2020, 14 (5) : 841-865. doi: 10.3934/ipi.2020039 [5] Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279 [6] Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178 [7] Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1833-1849. doi: 10.3934/cpaa.2021044 [8] Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313 [9] Boumedièene Chentouf, Sabeur Mansouri. Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1127-1141. doi: 10.3934/dcdss.2021090 [10] Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 [11] Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065 [12] Juan C. Jara, Felipe Rivero. Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4127-4137. doi: 10.3934/dcds.2014.34.4127 [13] Konstantinos Chrysafinos. Error estimates for time-discretizations for the velocity tracking problem for Navier-Stokes flows by penalty methods. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1077-1096. doi: 10.3934/dcdsb.2006.6.1077 [14] Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002 [15] Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 [16] Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113 [17] Masahiro Kubo, Noriaki Yamazaki. Periodic stability of elliptic-parabolic variational inequalities with time-dependent boundary double obstacles. Conference Publications, 2007, 2007 (Special) : 614-623. doi: 10.3934/proc.2007.2007.614 [18] Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591 [19] Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081 [20] Shi Jin, Christof Sparber, Zhennan Zhou. On the classical limit of a time-dependent self-consistent field system: Analysis and computation. Kinetic and Related Models, 2017, 10 (1) : 263-298. doi: 10.3934/krm.2017011

2021 Impact Factor: 1.273