Advanced Search
Article Contents
Article Contents

Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations

  • * Corresponding author

    * Corresponding author 

The first author is supported by China Scholar Council (NO. 201606190089). The second author is supported by the Research Foundation of Nanjing University of Aeronautics and Astronautics (NO. 1008-YAH17070)

Abstract Full Text(HTML) Related Papers Cited by
  • Two main results will be presented in our paper. First, we will prove the regularity of solutions to axially symmetric Navier-Stokes equations under a $log$ supercritical assumption on the horizontally radial component $u^r$ and vertical component $u^z$, accompanied by a $log$ subcritical assumption on the horizontally angular component $u^θ$ of the velocity. Second, the precise Green function for the operator $-(Δ-\frac{1}{r^2})$ under the axially symmetric situation, where $r$ is the distance to the symmetric axis, and some weighted $L^p$ estimates of it will be given. This will serve as a tool for the study of axially symmetric Navier-Stokes equations. As an application, we will prove the regularity of solutions to axially symmetric Navier-Stokes equations under a critical (or a subcritical) assumption on the angular component $w^θ$ of the vorticity.

    Mathematics Subject Classification: 35Q30, 76N10.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Reprint of the 1972 edition. Dover Publications, Inc., New York, 1992.
      H. Abidi  and  P. Zhang , Global smooth axisymmetric solutions of 3-D inhomogeneous incompressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 54 (2015) , 3251-3276.  doi: 10.1007/s00526-015-0902-6.
      L. J. Burke  and  Q. S. Zhang , A priori bounds for the vorticity of axially symmetric solutions to the Navier-Stokes equations, Adv. Differential Equations, 15 (2010) , 531-560. 
      D. Chae  and  J. Lee , On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002) , 645-671.  doi: 10.1007/s002090100317.
      E. A. Carlen  and  M. Loss , Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2-D Navier-Stokes equation, Duke Math. J., 81 (1995) , 135-157.  doi: 10.1215/S0012-7094-95-08110-1.
      C. C. Chen, R. M. Strain, H. Z. Yau and T. P. Tsai, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations, Int. Math. Res. Not. (IMRN), (2008), Art. ID rnn016, 31 pp. doi: 10.1093/imrn/rnn016.
      C. C. Chen , R. M. Strain , T. P. Tsai  and  H. Z. Yau , Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations Ⅱ, Comm. Partial Differential Equations, 34 (2009) , 203-232.  doi: 10.1080/03605300902793956.
      H. Chen , D. Fang  and  T. Zhang , Regularity of 3D axisymmetric Navier-Stokes equations, Discrete and Continuous Dynamical Systems, 37 (2017) , 1923-1939.  doi: 10.3934/dcds.2017081.
      L. Caffarelli , R. Kohn  and  L. Nirenberg , Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982) , 771-831.  doi: 10.1002/cpa.3160350604.
      C. L. Fefferman, Existence and Smoothness of the Navier-Stokes Equation. The Millennium Prize Problems, Clay Math. Inst., Cambridge, MA, (2006), 57-67.
      A. Grigor'yan, Heat kernels on weighted manifolds and applications, The Ubiquitous Heat Kernel, Amer. Math. Soc., Providence, RI, Contemp. Math., 398 (2006), 93-191. doi: 10.1090/conm/398/07486.
      D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, (1983). doi: 10.1007/978-3-642-61798-0.
      T. Gallay and V. Sverak, Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations, preprint, arXiv: 1510.01036.
      G. Seregin and D. Zhou, Regularity of solutions to the Navier-Stokes equations in $ \dot{B}^{-1}_{\infty, \infty }$ preprint, arXiv: 1802.03600. doi: 10.1007/s00021-002-8533-z.
      T.Y. Hou , Z. Lei  and  C. Li , Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations, 33 (2008) , 1622-1637.  doi: 10.1080/03605300802108057.
      T. Y. Hou  and  C. Li , Dynamic stability of the three-dimensional axisymmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math., 61 (2008) , 661-697.  doi: 10.1002/cpa.20212.
      Q. Jiu  and  Z. Xin , Some regularity criteria on suitable weak solutions of the 3-D incompressible axisymmetric Navier-Stokes equations, New Stud. Adv. Math., 2 (2003) , 119-139. 
      G. Koch , N. Nadirashvili , G. A. Seregin  and  V. Sverak , Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203 (2009) , 83-105.  doi: 10.1007/s11511-009-0039-6.
      O. A. Ladyzenskaja, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968) 155-177 (Russian).
      Z. Lei  and  Q. S. Zhang , A Liouville theorem for the axially-symmetric Navier-Stokes equations, J. Funct. Anal., 261 (2011) , 2323-2345.  doi: 10.1016/j.jfa.2011.06.016.
      Z. Lei  and  Q. S. Zhang , Structure of solutions of 3D axisymmetric Navier-Stokes equations near maximal points, Pacific J. Math., 254 (2011) , 335-344.  doi: 10.2140/pjm.2011.254.335.
      Z. Lei and Q. S. Zhang, Notes on axially symmetric Navier-Stokes equations, (2014) (private communications).
      Z. Lei  and  Q. S. Zhang , Criticality of the axially symmetric Navier-Stokes equations, Pacific J. Math., 289 (2017) , 169-187.  doi: 10.2140/pjm.2017.289.169.
      J. Neustupa  and  M. Pokorny , An interior regularity criterion for an axially symmetric suitable weak solution to the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000) , 381-399.  doi: 10.1007/PL00000960.
      X. Pan , Regularity of solutions to axisymmetric Navier-Stokes equations with a slightly supercritical condition, J. Differential Equations, 260 (2016) , 8485-8529.  doi: 10.1016/j.jde.2016.02.026.
      X. Pan , A regularity condition of 3d axisymmetric Navier-Stokes equations, Acta Appl. Math., 150 (2017) , 103-109.  doi: 10.1007/s10440-017-0096-3.
      G. Tian  and  Z. Xin , One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal., 11 (1998) , 135-145.  doi: 10.12775/TMNA.1998.008.
      M. R. Ukhovskii and V. I Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, Prikl. Mat. Meh., 32, 59-69 (Russian); translated as J. Appl. Math. Mech., 32 (1968), 52-61. doi: 10.1016/0021-8928(68)90147-0.
      G. N. Watson, A Treatise on the Theory of Bessel Functions, Reprint of the second edition, 1994, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995.
      D. Wei , Regularity criterion to the axially symmetric Navier-Stokes equations, J. Math. Anal. Appl., 435 (2016) , 402-413.  doi: 10.1016/j.jmaa.2015.09.088.
  • 加载中

Article Metrics

HTML views(600) PDF downloads(273) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint