-
Previous Article
Hilbert transforms along double variable fractional monomials
- CPAA Home
- This Issue
-
Next Article
A remark on norm inflation for nonlinear Schrödinger equations
Perturbations of nonlinear eigenvalue problems
1. | National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece |
2. | Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia |
3. | Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland |
4. | Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania |
5. | Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia |
We consider perturbations of nonlinear eigenvalue problems driven by a nonhomogeneous differential operator plus an indefinite potential. We consider both sublinear and superlinear perturbations and we determine how the set of positive solutions changes as the real parameter $λ$ varies. We also show that there exists a minimal positive solution $\overline{u}_λ$ and determine the monotonicity and continuity properties of the map $λ\mapsto\overline{u}_λ$. Special attention is given to the particular case of the $p$-Laplacian.
References:
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints, Memoirs Amer. Math. Soc., 196 (2008), nr. 915, ⅵ+70 pp. |
[2] |
W. Allegretto and Y. X. Huang,
A Picone's identity for the $p$-Lapacian and applications, Nonlinear Anal., 32 (1998), 819-830.
doi: 10.1016/S0362-546X(97)00530-0. |
[3] |
G. Autuori and P. Pucci,
Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 977-1009.
doi: 10.1007/s00030-012-0193-y. |
[4] |
L. Cherfils and Y. Ilyasov,
On the stationary solutions of generalized reaction diffusion equations with $p$&$q$ Laplacian, Comm. Pure Appl. Anal., 4 (2005), 9-22.
|
[5] |
F. Colasuonno, P. Pucci and C. Varga,
Multiple solutions for an eigenvalue problem involving $p$-Laplacian type operators, Nonlinear Anal., 75 (2012), 4496-4512.
doi: 10.1016/j.na.2011.09.048. |
[6] |
J. I. Diaz and J. E. Saa,
Existence et unicité des solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, 305 (1987), 521-524.
|
[7] |
G. Fragnelli, D. Mugnai and N. S. Papageorgiou,
Brezis-Oswald result for quasilinear Robin problems, Adv. Nonlin. Studies, 16 (2016), 403-422.
doi: 10.1515/ans-2016-0010. |
[8] |
L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[9] |
L. Gasinski and N. S. Papageorgiou,
Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations, Adv. Nonlin. Studies, 8 (2008), 843-870.
doi: 10.1515/ans-2008-0411. |
[10] |
L. Gasinski and N. S. Papageorgiou, Exercises in Analysis, Part 2: Nonlinear Analysis, Problem Books in Mathematics, Springer, Cham, 2016. |
[11] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. |
[12] |
G. Li and C. Yang,
The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037. |
[13] |
G. Lieberman,
On the natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Diff. Equations, 16 (1991), 311-361.
doi: 10.1080/03605309108820761. |
[14] |
S. A. Marano and S. Mosconi,
Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 279-291.
doi: 10.3934/dcdss.2018015. |
[15] |
S. A. Marano and N. S. Papageorgiou,
Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal., 12 (2013), 815-829.
doi: 10.3934/cpaa.2013.12.815. |
[16] |
D. Mugnai and N. S. Papageorgiou,
Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 729-788.
|
[17] |
N. S. Papageorgiou and V. D. Rădulescu,
Multiple solutions precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010. |
[18] |
N. S. Papageorgiou and V. D. Rădulescu,
Coercive and noncoercive nonlinear Neumann problems with indefinite potential, Forum Math., 28 (2016), 545-571.
doi: 10.1515/forum-2014-0094. |
[19] |
N. S. Papageorgiou and V. D. Rădulescu,
Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Revista Mat. Iberoam., 33 (2017), 251-289.
doi: 10.4171/RMI/936. |
[20] |
N. S. Papageorgiou and V. D. Rădulescu,
Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlin. Studies, 16 (2016), 737-764.
|
[21] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš,
Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discr. Cont. Dynam. Systems, Ser. A, 37 (2017), 2589-2618.
doi: 10.3934/dcds.2017111. |
[22] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš,
Positive solutions for nonlinear nonhomogeneous parametric Robin problems, Forum Math., 30 (2018), 553-580.
doi: 10.1515/forum-2017-0124. |
[23] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš,
Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term, Communications on Pure and Applied Analysis, 17 (2018), 231-241.
doi: 10.3934/cpaa.2018014. |
[24] |
K. Perera, P. Pucci and C. Varga,
An existence result for a class of quasilinear elliptic eigenvalue problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 441-451.
doi: 10.1007/s00030-013-0255-9. |
[25] |
P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007. |
show all references
References:
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints, Memoirs Amer. Math. Soc., 196 (2008), nr. 915, ⅵ+70 pp. |
[2] |
W. Allegretto and Y. X. Huang,
A Picone's identity for the $p$-Lapacian and applications, Nonlinear Anal., 32 (1998), 819-830.
doi: 10.1016/S0362-546X(97)00530-0. |
[3] |
G. Autuori and P. Pucci,
Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 977-1009.
doi: 10.1007/s00030-012-0193-y. |
[4] |
L. Cherfils and Y. Ilyasov,
On the stationary solutions of generalized reaction diffusion equations with $p$&$q$ Laplacian, Comm. Pure Appl. Anal., 4 (2005), 9-22.
|
[5] |
F. Colasuonno, P. Pucci and C. Varga,
Multiple solutions for an eigenvalue problem involving $p$-Laplacian type operators, Nonlinear Anal., 75 (2012), 4496-4512.
doi: 10.1016/j.na.2011.09.048. |
[6] |
J. I. Diaz and J. E. Saa,
Existence et unicité des solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, 305 (1987), 521-524.
|
[7] |
G. Fragnelli, D. Mugnai and N. S. Papageorgiou,
Brezis-Oswald result for quasilinear Robin problems, Adv. Nonlin. Studies, 16 (2016), 403-422.
doi: 10.1515/ans-2016-0010. |
[8] |
L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[9] |
L. Gasinski and N. S. Papageorgiou,
Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations, Adv. Nonlin. Studies, 8 (2008), 843-870.
doi: 10.1515/ans-2008-0411. |
[10] |
L. Gasinski and N. S. Papageorgiou, Exercises in Analysis, Part 2: Nonlinear Analysis, Problem Books in Mathematics, Springer, Cham, 2016. |
[11] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. |
[12] |
G. Li and C. Yang,
The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037. |
[13] |
G. Lieberman,
On the natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Diff. Equations, 16 (1991), 311-361.
doi: 10.1080/03605309108820761. |
[14] |
S. A. Marano and S. Mosconi,
Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 279-291.
doi: 10.3934/dcdss.2018015. |
[15] |
S. A. Marano and N. S. Papageorgiou,
Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal., 12 (2013), 815-829.
doi: 10.3934/cpaa.2013.12.815. |
[16] |
D. Mugnai and N. S. Papageorgiou,
Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 729-788.
|
[17] |
N. S. Papageorgiou and V. D. Rădulescu,
Multiple solutions precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010. |
[18] |
N. S. Papageorgiou and V. D. Rădulescu,
Coercive and noncoercive nonlinear Neumann problems with indefinite potential, Forum Math., 28 (2016), 545-571.
doi: 10.1515/forum-2014-0094. |
[19] |
N. S. Papageorgiou and V. D. Rădulescu,
Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Revista Mat. Iberoam., 33 (2017), 251-289.
doi: 10.4171/RMI/936. |
[20] |
N. S. Papageorgiou and V. D. Rădulescu,
Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlin. Studies, 16 (2016), 737-764.
|
[21] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš,
Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discr. Cont. Dynam. Systems, Ser. A, 37 (2017), 2589-2618.
doi: 10.3934/dcds.2017111. |
[22] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš,
Positive solutions for nonlinear nonhomogeneous parametric Robin problems, Forum Math., 30 (2018), 553-580.
doi: 10.1515/forum-2017-0124. |
[23] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš,
Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term, Communications on Pure and Applied Analysis, 17 (2018), 231-241.
doi: 10.3934/cpaa.2018014. |
[24] |
K. Perera, P. Pucci and C. Varga,
An existence result for a class of quasilinear elliptic eigenvalue problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 441-451.
doi: 10.1007/s00030-013-0255-9. |
[25] |
P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007. |
[1] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055 |
[2] |
Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897 |
[3] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[4] |
Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897 |
[5] |
Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735 |
[6] |
Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335 |
[7] |
H. O. Fattorini. The maximum principle in infinite dimension. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557 |
[8] |
Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739 |
[9] |
Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499 |
[10] |
Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593 |
[11] |
Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747 |
[12] |
Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100 |
[13] |
Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial and Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27 |
[14] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[15] |
Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69 |
[16] |
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571 |
[17] |
Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7 |
[18] |
Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155 |
[19] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003 |
[20] |
Jeffrey R. L. Webb. Positive solutions of nonlinear equations via comparison with linear operators. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5507-5519. doi: 10.3934/dcds.2013.33.5507 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]