• Previous Article
    Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term
  • CPAA Home
  • This Issue
  • Next Article
    Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models
May  2019, 18(3): 1509-1521. doi: 10.3934/cpaa.2019072

Applications of generalized trigonometric functions with two parameters

Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama 337-8570, Japan

* Corresponding author

Dedicated to Professor Yoshio Yamada on the occasion of his retirement

Received  November 2017 Revised  May 2018 Published  November 2018

Fund Project: The work of S. Takeuchi was supported by JSPS KAKENHI Grant Number 17K05336.

Generalized trigonometric functions (GTFs) are simple generalization of the classical trigonometric functions. GTFs are deeply related to the $p$-Laplacian, which is known as a typical nonlinear differential operator, and there are a lot of works on GTFs concerning the $p$-Laplacian. However, few applications to differential equations unrelated to the $p$-Laplacian are known. We will apply GTFs with two parameters to nonlinear nonlocal boundary value problems without $p$-Laplacian. Moreover, we will give integral formulas for the functions, e.g. Wallis-type formulas, and apply the formulas to the lemniscate function and the lemniscate constant.

Citation: Hiroyuki Kobayashi, Shingo Takeuchi. Applications of generalized trigonometric functions with two parameters. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1509-1521. doi: 10.3934/cpaa.2019072
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964.

[2]

G. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781107325937.

[3]

P. BindingL. BoultonJ. ČepičkaP. Drábek and P. Girg, Basis properties of eigenfunctions of the p-Laplacian, Proc. Amer. Math. Soc., 134 (2006), 3487-3494.  doi: 10.1090/S0002-9939-06-08001-4.

[4]

F. D. Burgoyne, Generalized trigonometric functions, Math. Comp., 18 (1964), 314-316.  doi: 10.2307/2003310.

[5]

P. J. Bushell and D. E. Edmunds, Remarks on generalized trigonometric functions, Rocky Mountain J. Math., 42 (2012), 25-57.  doi: 10.1216/RMJ-2012-42-1-25.

[6]

L. Boulton and G. Lord, Approximation properties of the q-sine bases, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 2690-2711.  doi: 10.1098/rspa.2010.0486.

[7]

B. A. Bhayo and L. Yin, On generalized $(p, q)$-elliptic integrals, preprint, arXiv: 1507.00031.

[8]

C. CaoS. IbrahimK. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482.  doi: 10.1007/s00220-015-2365-1.

[9]

M. del PinoM. Elgueta and R. Manásevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(\vert u'\vert ^{p-2}u')'+f(t,u) = 0,\;u(0) = u(T) = 0,\;p>1$, J. Differential Equations, 80 (1989), 1-13.  doi: 10.1016/0022-0396(89)90093-4.

[10]

O. Došlý and P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies, 202. Elsevier Science B.V., Amsterdam, 2005.

[11]

P. Drábek and R. Manásevich, On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian, Differential Integral Equations, 12 (1999), 773-788. 

[12]

D. E. EdmundsP. Gurka and J. Lang, Properties of generalized trigonometric functions, J. Approx. Theory, 164 (2012), 47-56.  doi: 10.1016/j.jat.2011.09.004.

[13]

D. E. EdmundsP. Gurka and J. Lang, Basis properties of generalized trigonometric functions, J. Math. Anal. Appl., 420 (2014), 1680-1692.  doi: 10.1016/j.jmaa.2014.06.015.

[14]

A. Elbert, A half-linear second order differential equation, Qualitative theory of differential equations, Vol. I, II (Szeged, 1979), pp. 153-180, Colloq. Math. Soc. Janos Bolyai, 30, NorthHolland, Amsterdam-New York, 1981.

[15]

T. Hyde, A Wallis product on clovers, Amer. Math. Monthly, 121 (2014), 237-243.  doi: 10.4169/amer.math.monthly.121.03.237.

[16]

T. Kamiya and S. Takeuchi, Complete (p, q)-elliptic integrals with application to a family of means, J. Class. Anal., 10 (2017), 15-25.  doi: 10.7153/jca-10-02.

[17]

J. Lang and D. E. Edmunds, Eigenvalues, Embeddings and Generalised Trigonometric Functions, Lecture Notes in Mathematics, 2016. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18429-1.

[18]

P. Lindqvist, Some remarkable sine and cosine functions, Ricerche Mat., 44 (1995), 269-290. 

[19]

P. Lindqvist and J. Peetre, p-arclength of the q-circle, The Mathematics Student, 72 (2003), 139-145. 

[20]

P. Lindqvist and J. Peetre, Comments on Erik Lundberg's 1879 thesis. Especially on the work of Göran Dillner and his influence on Lundberg, Memorie dell'Instituto Lombardo (Classe di Scienze Matem. Nat.) 31, 2004.

[21]

Y. Naito, Uniqueness of positive solutions of quasilinear differential equations, Differential Integral Equations, 8 (1995), 1813-1822. 

[22]

E. Neuman, Some properties of the generalized Jacobian elliptic functions Ⅲ, Integral Transforms Spec. Funct., 27 (2016), 824-834.  doi: 10.1080/10652469.2016.1210144.

[23]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, With 1 CD-ROM (Windows, Macintosh and UNIX). U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.

[24]

D. Shelupsky, A generalization of the trigonometric functions, Amer. Math. Monthly, 66 (1959), 879-884.  doi: 10.2307/2309789.

[25]

S. Takeuchi, Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian, J. Math. Anal. Appl., 385 (2012), 24-35.  doi: 10.1016/j.jmaa.2011.06.063.

[26]

S. Takeuchi, The basis property of generalized Jacobian elliptic functions, Commun. Pure Appl. Anal., 13 (2014), 2675-2692.  doi: 10.3934/cpaa.2014.13.2675.

[27]

S. Takeuchi, A new form of the generalized complete elliptic integrals, Kodai Math. J., 39 (2016), 202-226. 

[28]

S. Takeuchi, Multiple-angle formulas of generalized trigonometric functions with two parameters, J. Math. Anal. Appl., 444 (2016), 1000-1014.  doi: 10.1016/j.jmaa.2016.06.074.

[29]

S. Takeuchi, Legendre-type relations for generalized complete elliptic integrals, J. Class. Anal., 9 (2016), 35-42.  doi: 10.7153/jca-09-04.

[30]

S. Takeuchi, Complete $p$-elliptic integrals and a computation formula of $\pi_p$ for $p=4$, The Ramanujan Journal, 46 (2018), 309-321.  doi: 10.1007/s11139-018-9993-y.

[31]

L. Yin and L.-G. Huang, Inequalities for the generalized trigonometric and hyperbolic functions with two parameters, J. Nonlinear Sci. Appl., 8 (2015), 315-323.  doi: 10.22436/jnsa.008.04.04.

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964.

[2]

G. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781107325937.

[3]

P. BindingL. BoultonJ. ČepičkaP. Drábek and P. Girg, Basis properties of eigenfunctions of the p-Laplacian, Proc. Amer. Math. Soc., 134 (2006), 3487-3494.  doi: 10.1090/S0002-9939-06-08001-4.

[4]

F. D. Burgoyne, Generalized trigonometric functions, Math. Comp., 18 (1964), 314-316.  doi: 10.2307/2003310.

[5]

P. J. Bushell and D. E. Edmunds, Remarks on generalized trigonometric functions, Rocky Mountain J. Math., 42 (2012), 25-57.  doi: 10.1216/RMJ-2012-42-1-25.

[6]

L. Boulton and G. Lord, Approximation properties of the q-sine bases, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 2690-2711.  doi: 10.1098/rspa.2010.0486.

[7]

B. A. Bhayo and L. Yin, On generalized $(p, q)$-elliptic integrals, preprint, arXiv: 1507.00031.

[8]

C. CaoS. IbrahimK. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482.  doi: 10.1007/s00220-015-2365-1.

[9]

M. del PinoM. Elgueta and R. Manásevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(\vert u'\vert ^{p-2}u')'+f(t,u) = 0,\;u(0) = u(T) = 0,\;p>1$, J. Differential Equations, 80 (1989), 1-13.  doi: 10.1016/0022-0396(89)90093-4.

[10]

O. Došlý and P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies, 202. Elsevier Science B.V., Amsterdam, 2005.

[11]

P. Drábek and R. Manásevich, On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian, Differential Integral Equations, 12 (1999), 773-788. 

[12]

D. E. EdmundsP. Gurka and J. Lang, Properties of generalized trigonometric functions, J. Approx. Theory, 164 (2012), 47-56.  doi: 10.1016/j.jat.2011.09.004.

[13]

D. E. EdmundsP. Gurka and J. Lang, Basis properties of generalized trigonometric functions, J. Math. Anal. Appl., 420 (2014), 1680-1692.  doi: 10.1016/j.jmaa.2014.06.015.

[14]

A. Elbert, A half-linear second order differential equation, Qualitative theory of differential equations, Vol. I, II (Szeged, 1979), pp. 153-180, Colloq. Math. Soc. Janos Bolyai, 30, NorthHolland, Amsterdam-New York, 1981.

[15]

T. Hyde, A Wallis product on clovers, Amer. Math. Monthly, 121 (2014), 237-243.  doi: 10.4169/amer.math.monthly.121.03.237.

[16]

T. Kamiya and S. Takeuchi, Complete (p, q)-elliptic integrals with application to a family of means, J. Class. Anal., 10 (2017), 15-25.  doi: 10.7153/jca-10-02.

[17]

J. Lang and D. E. Edmunds, Eigenvalues, Embeddings and Generalised Trigonometric Functions, Lecture Notes in Mathematics, 2016. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18429-1.

[18]

P. Lindqvist, Some remarkable sine and cosine functions, Ricerche Mat., 44 (1995), 269-290. 

[19]

P. Lindqvist and J. Peetre, p-arclength of the q-circle, The Mathematics Student, 72 (2003), 139-145. 

[20]

P. Lindqvist and J. Peetre, Comments on Erik Lundberg's 1879 thesis. Especially on the work of Göran Dillner and his influence on Lundberg, Memorie dell'Instituto Lombardo (Classe di Scienze Matem. Nat.) 31, 2004.

[21]

Y. Naito, Uniqueness of positive solutions of quasilinear differential equations, Differential Integral Equations, 8 (1995), 1813-1822. 

[22]

E. Neuman, Some properties of the generalized Jacobian elliptic functions Ⅲ, Integral Transforms Spec. Funct., 27 (2016), 824-834.  doi: 10.1080/10652469.2016.1210144.

[23]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, With 1 CD-ROM (Windows, Macintosh and UNIX). U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.

[24]

D. Shelupsky, A generalization of the trigonometric functions, Amer. Math. Monthly, 66 (1959), 879-884.  doi: 10.2307/2309789.

[25]

S. Takeuchi, Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian, J. Math. Anal. Appl., 385 (2012), 24-35.  doi: 10.1016/j.jmaa.2011.06.063.

[26]

S. Takeuchi, The basis property of generalized Jacobian elliptic functions, Commun. Pure Appl. Anal., 13 (2014), 2675-2692.  doi: 10.3934/cpaa.2014.13.2675.

[27]

S. Takeuchi, A new form of the generalized complete elliptic integrals, Kodai Math. J., 39 (2016), 202-226. 

[28]

S. Takeuchi, Multiple-angle formulas of generalized trigonometric functions with two parameters, J. Math. Anal. Appl., 444 (2016), 1000-1014.  doi: 10.1016/j.jmaa.2016.06.074.

[29]

S. Takeuchi, Legendre-type relations for generalized complete elliptic integrals, J. Class. Anal., 9 (2016), 35-42.  doi: 10.7153/jca-09-04.

[30]

S. Takeuchi, Complete $p$-elliptic integrals and a computation formula of $\pi_p$ for $p=4$, The Ramanujan Journal, 46 (2018), 309-321.  doi: 10.1007/s11139-018-9993-y.

[31]

L. Yin and L.-G. Huang, Inequalities for the generalized trigonometric and hyperbolic functions with two parameters, J. Nonlinear Sci. Appl., 8 (2015), 315-323.  doi: 10.22436/jnsa.008.04.04.

Figure 1.  Graphs of solutions of (4) with $H = 1$ for $m = 0.5, \ 1.0$ and $10.0$.
Figure 2.  Graphs of solutions of (13) for $p = 1.1, \ 2.0$ and $5.0$.
[1]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[2]

Beatrice Abbondanza, Stefano Biagi. Riesz-type representation formulas for subharmonic functions in sub-Riemannian settings. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3161-3192. doi: 10.3934/cpaa.2021101

[3]

Anna Maria Candela, Addolorata Salvatore. Positive solutions for some generalized $ p $–Laplacian type problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1935-1945. doi: 10.3934/dcdss.2020151

[4]

Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001

[5]

Hirobumi Mizuno, Iwao Sato. L-functions and the Selberg trace formulas for semiregular bipartite graphs. Conference Publications, 2003, 2003 (Special) : 638-646. doi: 10.3934/proc.2003.2003.638

[6]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[7]

Marko Kostić. Almost periodic type functions and densities. Evolution Equations and Control Theory, 2022, 11 (2) : 457-486. doi: 10.3934/eect.2021008

[8]

Alexander Schaub, Olivier Rioul, Jean-Luc Danger, Sylvain Guilley, Joseph Boutros. Challenge codes for physically unclonable functions with Gaussian delays: A maximum entropy problem. Advances in Mathematics of Communications, 2020, 14 (3) : 491-505. doi: 10.3934/amc.2020060

[9]

René Henrion. Gradient estimates for Gaussian distribution functions: application to probabilistically constrained optimization problems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 655-668. doi: 10.3934/naco.2012.2.655

[10]

Sanjit Kumar Mohanty, Rajani Ballav Dash. A quadrature rule of Lobatto-Gaussian for numerical integration of analytic functions. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021031

[11]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

[12]

Tao Chen, Linda Keen. Slices of parameter spaces of generalized Nevanlinna functions. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5659-5681. doi: 10.3934/dcds.2019248

[13]

Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043

[14]

Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675

[15]

Limin Wen, Xianyi Wu, Xiaobing Zhao. The credibility premiums under generalized weighted loss functions. Journal of Industrial and Management Optimization, 2009, 5 (4) : 893-910. doi: 10.3934/jimo.2009.5.893

[16]

Mihaela Roxana Nicolai, Dan Tiba. Implicit functions and parametrizations in dimension three: Generalized solutions. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2701-2710. doi: 10.3934/dcds.2015.35.2701

[17]

Xia Li, Yong Wang, Zheng-Hai Huang. Continuity, differentiability and semismoothness of generalized tensor functions. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3525-3550. doi: 10.3934/jimo.2020131

[18]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[19]

Regina Sandra Burachik, Alex Rubinov. On the absence of duality gap for Lagrange-type functions. Journal of Industrial and Management Optimization, 2005, 1 (1) : 33-38. doi: 10.3934/jimo.2005.1.33

[20]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (424)
  • HTML views (350)
  • Cited by (4)

Other articles
by authors

[Back to Top]