We consider the following semilinear Schrödinger equation with inverse square potential
$\begin{array}{l}\left\{ \begin{align} & -\vartriangle u+(V(x)-\frac{\mu }{|x{{|}^{2}}}u=f(x,u),\ \ \ \ \ x\in {{\mathbb{R}}^{N}}, \\ & u\in {{H}^{1}}({{\mathbb{R}}^{N}}), \\ \end{align} \right.\end{array}$
where $N≥ 3$, $f$ is asymptotically linear, $V$ is 1-periodic in each of $x_1, ..., x_N$ and $\sup[σ(-\triangle +V)\cap (-∞, 0)]<0<{\rm{inf}}[σ(-\triangle +V)\cap (0, ∞)]$. Under some mild assumptions on $V$ and $f$, we prove the existence and asymptotical behavior of ground state solutions of Nehari-Pankov type to the above problem.
Citation: |
S. Alama
and Y. Y. Li
, On ''multibump" bound states for certain semilinear elliptic equations, Indiana Univ. Math. J., 41 (1992)
, 983-1026.
doi: 10.1512/iumj.1992.41.41052.![]() ![]() ![]() |
|
J. Chabrowski
, A. Szulkin
and M. Willem
, Schrödinger equation with multiparticle potential and critical nonlinearity, Topol. Methods Nonlinear Anal., 34 (2009)
, 201-211.
doi: 10.12775/TMNA.2009.038.![]() ![]() ![]() |
|
S.T. Chen
and X.H. Tang
, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete Contin Dyn Syst-A, 38 (2018)
, 2333-2348.
doi: 10.3934/dcds.2018096.![]() ![]() ![]() |
|
V. Coti Zelati
and P. H. Rabinowitz
, Homoclinic type solutions for a semilinear elliptic PDE on ${\mathbb{R}}^n$, Comm. Pure Appl. Math., 45 (1992)
, 1217-1269.
doi: 10.1002/cpa.3160451002.![]() ![]() ![]() |
|
Y. B. Deng
, L. Y. Jin
and S. J. Peng
, Solutions of Schrödinger equations with inverse square potential and critical nonlinearity, J. Differential Equations, 253 (2012)
, 1376-1398.
doi: 10.1016/j.jde.2012.05.009.![]() ![]() ![]() |
|
Y. H. Ding, Variational Methods for Strongly Indefinite Problems World Scientific, Singapore, 2007.
doi: 10.1142/9789812709639.![]() ![]() ![]() |
|
Y. H. Ding
and C. Lee
, Multiple solutions of Schröinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 222 (2006)
, 137-163.
doi: 10.1016/j.jde.2005.03.011.![]() ![]() ![]() |
|
D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.
![]() ![]() |
|
Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhäuser, Basel, 1996.
doi: 10.1007/978-3-0348-9029-8.![]() ![]() ![]() |
|
V. Felli
, On the existence of ground state solutions to nonlinear Schrödinger equations with multisingular inverse-square anisotropic potentials, J. Anal. Math., 108 (2009)
, 189-217.
doi: 10.1007/s11854-009-0023-2.![]() ![]() ![]() |
|
V. Felli
, E. Marchini
and S. Terracini
, On Schrödinger operators with multisingular inverse-square anisotropic potentials, J. Funct. Anal., 250 (2007)
, 265-316.
doi: 10.1016/j.jfa.2006.10.019.![]() ![]() ![]() |
|
V. Felli
, E. Marchini
and S. Terracini
, On Schrödinger operators with multisingular inverse-square anisotropic potentials, Indiana Univ. Math. J., 58 (2009)
, 617-676.
doi: 10.1512/iumj.2009.58.3471.![]() ![]() ![]() |
|
V. Felli
and A. Primo
, Classification of local asymptotics for solutions to heat equations with inverse-square potentials, Disc. Contin. Dyn. Syst., 31 (2011)
, 65-107.
doi: 10.3934/dcds.2011.31.65.![]() ![]() ![]() |
|
V. Felli
and S. Terracini
, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations, 31 (2006)
, 469-495.
doi: 10.1080/03605300500394439.![]() ![]() ![]() |
|
Q. Guo
and J. Mederski
, Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potential, J. Differential Equations, 260 (2016)
, 4180-4202.
doi: 10.1016/j.jde.2015.11.006.![]() ![]() ![]() |
|
J. Jeanjean
, On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer-type problem on ${\mathbb{R}}^N$, Proc. Roc. Soc. Edinberg, 129 (1999)
, 787-809.
doi: 10.1017/S0308210500013147.![]() ![]() ![]() |
|
X. Y. Lin
and X. H. Tang
, An asymptotically periodic and asymptotically linear Schrödinger equation with indefinite linear part, Comput. Math. Applic., 70 (2015)
, 726-736.
doi: 10.1016/j.camwa.2015.06.013.![]() ![]() ![]() |
|
W. Kryszewski
and A. Szulkin
, Generalized linking theoremwith an application to a semilinear Schrödinger equation, Adv. Differ. Equ., 3 (1998)
, 441-472.
![]() ![]() |
|
G. B. Li
and A. Szulkin
, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002)
, 763-776.
doi: 10.1142/S0219199702000853.![]() ![]() ![]() |
|
S. Liu
, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012)
, 1-9.
doi: 10.1007/s00526-011-0447-2.![]() ![]() ![]() |
|
J. Mederski
, Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum, Topol. Methods Nonlinear Anal., 46 (2015)
, 755-771.
![]() ![]() |
|
J. Mederski
, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Comm. Partial Differential Equations, 41 (2016)
, 1426-1440.
doi: 10.1080/03605302.2016.1209520.![]() ![]() ![]() |
|
A. Pankov
, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005)
, 259-287.
doi: 10.1007/s00032-005-0047-8.![]() ![]() ![]() |
|
D. Ruiz
and M. Willem
, Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations, 190 (2003)
, 524-538.
doi: 10.1016/S0022-0396(02)00178-X.![]() ![]() ![]() |
|
D. Smets
, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc., 357 (2005)
, 2909-2938.
doi: 10.1090/S0002-9947-04-03769-9.![]() ![]() ![]() |
|
A. Szulkin
and T. Weth
, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009)
, 3802-3822.
doi: 10.1016/j.jfa.2009.09.013.![]() ![]() ![]() |
|
A. Szulkin
and W. M. Zou
, Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal., 187 (2001)
, 25-41.
doi: 10.1006/jfan.2001.3798.![]() ![]() ![]() |
|
X. H. Tang
, New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math. Anal. Appl., 413 (2014)
, 392-410.
doi: 10.1016/j.jmaa.2013.11.062.![]() ![]() ![]() |
|
X. H. Tang
, Ground state solutions for superlinear Schrödinger equation, Advance Nonlinear Studies, 14 (2014)
, 361-373.
doi: 10.1515/ans-2014-0208.![]() ![]() ![]() |
|
X. H. Tang
, Non-Nehari manifold method for asymptotically linear Schrödinger equation, J. Aust. Math. Soc., 98 (2015)
, 104-116.
doi: 10.1017/S144678871400041X.![]() ![]() ![]() |
|
X. H. Tang
, Non-Nehari manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58 (2015)
, 715-728.
doi: 10.1007/s11425-014-4957-1.![]() ![]() ![]() |
|
X. H. Tang
and S. T. Chen
, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potential, Disc. Contin. Dyn. Syst., 37 (2017)
, 4973-5002.
doi: 10.3934/dcds.2017214.![]() ![]() ![]() |
|
X. H. Tang
and S. T. Chen
, Ground state solutions of Nehari-Pohožaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 56 (2017)
, 110-134.
doi: 10.1007/s00526-017-1214-9.![]() ![]() ![]() |
|
S. Terracini
, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 2 (1996)
, 241-264.
![]() ![]() |
|
L. Wei
, X. Y. Cheng
and Z. S. Feng
, Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials, Disc. Contin. Dyn. Syst., 36 (2016)
, 7169-7189.
doi: 10.3934/dcds.2016112.![]() ![]() ![]() |
|
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
|
L. Zhang
, X. H. Tang
and Y. Chen
, Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators, Commun. Pur. Appl. Anal., 16 (2017)
, 823-842.
doi: 10.3934/cpaa.2017039.![]() ![]() ![]() |
|
J. Zhang
, W. Zhang
and X. H. Tang
, Ground state solutions for Hamiltonian elliptic system with inverse square potential, Disc. Contin. Dyn. Syst., 37 (2017)
, 4565-4583.
doi: 10.3934/dcds.2017195.![]() ![]() ![]() |