\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the existence of solutions and causality for relativistic viscous conformal fluids

M. M. D. is partially supported by NSF grant # DMS-1812826, by a Sloan Research Fellowship provided by the Alfred P. Sloan foundation, and by a Discovery grant administered by Vanderbilt University.
Abstract Full Text(HTML) Related Papers Cited by
  • We consider a stress-energy tensor describing a pure radiation viscous fluid with conformal symmetry introduced in [3]. We show that the corresponding equations of motions are causal in Minkowski background and also when coupled to Einstein's equations, and solve the associated initial-value problem.

    Mathematics Subject Classification: Primary: 35Q76; Secondary: 35L15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. M. Anile, Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1 edition, 1990.
    [2] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP, 04 (2008), 100. doi: 10.1088/1126-6708/2008/04/100.
    [3] F. Bemfica, M. M. Disconzi and J. Noronha, Causality and existence of solutions of relativistic viscous fluid dynamics with gravity, Physical Review D, 98 (2018), 104064 (26 pages).
    [4] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP, 02 (2008), 045.
    [5] C. H. ChanM. Czubak and M. M. Disconzi, The formulation of the Navier-Stokes equations on Riemannian manifolds, Journal of Geometry and Physics, 121 (2017), 335-346.  doi: 10.1016/j.geomphys.2017.07.015.
    [6] Y. Choquet-Bruhat, Diagonalisation des systèmes quasi-linéaires et hyperbolicité non stricte, J. Math. Pures Appl. (9), 45 (1966), 371-386.
    [7] Y. Choquet-BruhatGeneral Relativity and the Einstein Equations, Oxford University Press, New York, 2009. 
    [8] P. T. Chruściel and E. Delay, Manifold structures for sets of solutions of the general relativistic constraint equations, J. Geom. Phys., 51 (2004), 442-472.  doi: 10.1016/j.geomphys.2003.12.002.
    [9] C. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2, 1st edition, John Wiley & Sons, Inc., 1991.
    [10] M. Czubak and M. M. Disconzi, On the well-posedness of relativistic viscous fluids with non-zero vorticity, Journal of Mathematical Physics, 57 (2016), 042501, 21 pages. doi: 10.1063/1.4944910.
    [11] R. D. de SouzaT. Koide and T. Kodama, Hydrodynamic approaches in relativistic heavy ion reactions, Prog. Part. Nucl. Phys., 86 (2016), 35-85. 
    [12] M. M. Disconzi, On the well-posedness of relativistic viscous fluids, Nonlinearity, 27 (2014), 1915-1935.  doi: 10.1088/0951-7715/27/8/1915.
    [13] M. M. Disconzi, Remarks on the Einstein-Euler-entropy system, Reviews in Mathematical Physics, 27 (2015), 1550014, 45 pages. doi: 10.1142/S0129055X15500142.
    [14] M. M. Disconzi and D. G. Ebin, The free boundary Euler equations with large surface tension, Journal of Differential Equations, 261 (2016), 821-889.  doi: 10.1016/j.jde.2016.03.029.
    [15] M. M. Disconzi, T. W. Kephart and R. J. Scherrer, A new approach to cosmological bulk viscosity, Physical Review D, 91 (2015), 043532 (6 pages). doi: 10.1103/PhysRevD.91.043532.
    [16] M. M. Disconzi, T. W. Kephart and R. J. Scherrer, On a viable first order formulation of relativistic viscous fluids and its applications to cosmology, International Journal of Modern Physics D, 26 (2017), 1750146 (52 pages). doi: 10.1142/S0218271817501462.
    [17] M. M. Discozni and J. Speck, The relativistic euler equations: Remarkable null structures and regularity properties, arXiv: 1809.06204.
    [18] M. Hadžić, S. Shkoller and J. Speck, A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary, arXiv: 1511.07467.
    [19] G. S. Hall, Weyl manifolds and connections, Journal of Mathematical Physics, 33 (1992), 2633-2638.  doi: 10.1063/1.529582.
    [20] Y. Hatta, J. Noronha and B.-W. Xiao, Exact analytical solutions of second-order conformal hydrodynamics, Physical Review D, 89 (2014), 051702.
    [21] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1975.
    [22] W. A. Hiscock and L. Lindblom, Stability and causality in dissipative relativistic fluids, Annals of Physics, 151 (1983), 466-496.  doi: 10.1016/0003-4916(83)90288-9.
    [23] W. A. Hiscock and L. Lindblom, Generic instabilities in first-order dissipative fluid theories, Phys. Rev. D, 31 (1985), 725-733.  doi: 10.1103/PhysRevD.31.725.
    [24] J. JangP. G. LeFloch and N. Masmoudi, Lagrangian formulation and a priori estimates for relativistic fluid flows with vacuum, Journal of Differential Equations, 260 (2016), 5481-5509.  doi: 10.1016/j.jde.2015.12.004.
    [25] S. Klainerman and F. Nicolo, The Evolution Problem in General Relativity, Progress in Mathematical Physics, vol. 25, 1st edition, Birkhäuser Boston, 2003. doi: 10.1007/978-1-4612-2084-8.
    [26] J. Leray, Hyperbolic Differential Equations, The Institute for Advanced Study, Princeton, N. J., 1953.
    [27] J. Leray and Y. Ohya, Systèmes linéaires, hyperboliques non stricts, in Deuxième Colloq. l'Anal. Fonct, Centre Belge Recherches Math., Librairie Universitaire, Louvain, 1964, 105-144.
    [28] J. Leray and Y. Ohya, Équations et systèmes non-linéaires, hyperboliques nonstricts, Math. Ann., 170 (1967), 167-205.  doi: 10.1007/BF01350150.
    [29] J. Leray and Y. Ohya, équations et systèmes non linéaires, hyperboliques non-stricts, in Hyperbolic Equations and Waves Rencontres, Battelle Res. Inst., Seattle, Wash., 1968, Springer, Berlin, 1970, 331-369.
    [30] A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics: Lectures on the Existence of Solutions, W. A. Benjamin, New York, 1967.
    [31] H. Lindblad, Well posedness for the motion of a compressible liquid with free surface boundary, Comm. Math. Phys., 260 (2005), 319-392.  doi: 10.1007/s00220-005-1406-6.
    [32] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 3, Dunod, Paris, 1970, Travaux et Recherches Math´ematiques, No. 20.
    [33] R. Loganayagam, Entropy current in conformal hydrodynamics, JHEP, 05 (2008), 087. doi: 10.1088/1126-6708/2008/05/087.
    [34] S. MizohataOn the Cauchy Problem, Science Press and Academic Press, Inc., Hong Kong, 1985. 
    [35] G. Pichon, Étude relativiste de fluides visqueux et chargés, Annales de l'I.H.P. Physique théorique, 2 (1965), 21–85.
    [36] A. D. Rendall, The initial value problem for a class of general relativistic fluid bodies, J. Math. Phys., 33 (1992), 1047-1053.  doi: 10.1063/1.529766.
    [37] L. Rezzolla and  O. ZanottiRelativistic Hydrodynamics, Oxford University Press, New York, 2013. 
    [38] H. Ringstrom, The Cauchy Problem in General Relativity, ESI Lectures in Mathematics and Physics, European Mathematical Society, 2009. doi: 10.4171/053.
    [39] L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, Singapore, 1993. doi: 10.1142/9789814360036.
    [40] R. M. Wald, General Relativity, University of Chicago press, 2010. doi: 10.7208/chicago/9780226870373.001.0001.
  • 加载中
SHARE

Article Metrics

HTML views(652) PDF downloads(261) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return