-
Previous Article
New general decay results in a finite-memory bresse system
- CPAA Home
- This Issue
-
Next Article
The interior gradient estimate for some nonlinear curvature equations
Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems
1. | Department of Mathematical Sciences, University of Illinois at Springfield, Springfield, IL 62703, USA |
2. | Department of Mathematics and Statistics, Auburn University, AL 36849, USA |
$ \begin{equation*} \begin{cases} u_t(t,x) = \mathcal{A} u+u(a_1(t,x)-b_1(t,x)u-c_1(t,x)v),\quad x\in {\mathbb{R}} \cr v_t(t,x) = \mathcal{A} v+ v(a_2(t,x)-b_2(t,x)u-c_2(t,x) v),\quad x\in {\mathbb{R}} \end{cases} \end{equation*} $ |
$ (\mathcal{A}u)(t,x) = u_{xx}(t,x) $ |
$ (\mathcal{A}u)(t,x) = \int_{ {\mathbb{R}} }\kappa(y-x)u(t,y)dy-u(t,x) $ |
$ \kappa(\cdot) $ |
$ a_i(t+T,x) = a_i(t,x) $ |
$ b_i(t+T,x) = b_i(t,x) $ |
$ c_i(t+T,x) = c_i(t,x) $ |
$ a_i $ |
$ b_i $ |
$ c_i $ |
$ i = 1,2 $ |
$ |x|\gg 1 $ |
$ a_i(t,x) = a_i^0(t) $ |
$ b_i(t,x) = b_i^0(t) $ |
$ c_i(t,x) = c_i^0(t) $ |
$ a_i^0(t) $ |
$ b_i^0(t) $ |
$ c_i^0(t) $ |
$ |x|\gg 1 $ |
References:
[1] |
X. Bao and Z.-C. Wang,
Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402-2435.
doi: 10.1016/j.jde.2013.06.024. |
[2] |
X. Bao, W.-T. Li and W. Shen,
Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637.
doi: 10.1016/j.jde.2016.02.032. |
[3] |
H. Berestycki, F. Hamel and L. Rossi,
Liouville-type results for semilinear elliptic equations in unbounded domains, Annali di Matematica, 186 (2007), 469-507.
doi: 10.1007/s10231-006-0015-0. |
[4] |
C. Conley and R. Gardner,
An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343.
doi: 10.1512/iumj.1984.33.33018. |
[5] |
S. R. Dunbar,
Traveling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.
doi: 10.1007/BF00276112. |
[6] |
J. Fang and X.-Q. Zhao,
Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.
doi: 10.1137/140953939. |
[7] |
J. Fang, X. Yu and X.-Q. Zhao,
Traveling waves and spreading speeds for time-space periodic monotone systems, J. Functional Analysis, 272 (2017), 4222-4262.
doi: 10.1016/j.jfa.2017.02.028. |
[8] |
J.-S. Guo and X. Liang,
The minimal speed of traveling fronts for Lotka-volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363.
doi: 10.1007/s10884-011-9214-5. |
[9] |
G. Hetzer, T. Nguyen and W. Shen,
Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722.
doi: 10.3934/cpaa.2012.11.1699. |
[10] |
G. Hetzer and W. Shen,
Uniform persistence, coexistence, and extinction in almost periodic/nonautonomous competition diffusion systems, SIAM J. Math. Anal., 34 (2002), 204-227.
doi: 10.1137/S0036141001390695. |
[11] |
G. Hetzer, W. Shen and A. Zhang,
Effects of spatial variations and dispersal strategies on principal eigenvalues of dispersal operators and spreading speeds of monostable equations, Rocky Mountain Journal of Mathematics, 43 (2013), 489-513.
doi: 10.1216/RMJ-2013-43-2-489. |
[12] |
Y. Hosono,
The minimal spread of traveling fronts for a diffusive Lotka-Volterra competition model, Bull. Math. Biol., 66 (1998), 435-448.
|
[13] |
W. Huang,
Problem on minimum wave speed for a Lotka-Volterra reaction diffusion competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.
doi: 10.1007/s10884-010-9159-0. |
[14] |
Y. Kan-on,
Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.
doi: 10.1137/S0036141093244556. |
[15] |
Y. Kan-on,
Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164.
doi: 10.1016/0362-546X(95)00142-I. |
[16] |
L. Kong and W. Shen,
Positive stationary solutions and spreading speeds of KPP equations in locally spatially inhomogeneous media, Methods Appl. Anal., 18 (2011), 427-456.
doi: 10.4310/MAA.2011.v18.n4.a5. |
[17] |
L. Kong and W. Shen,
Liouville type property and spreading speeds of KPP equations in periodic media with localized spatial inhomogeneity, J. Dynam. Differential Equations, 26 (2014), 181-215.
doi: 10.1007/s10884-014-9351-8. |
[18] |
L. Kong, N. Rawal and W. Shen,
Spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in periodic habitats, Math. Model. Nat. Phenom., 10 (2015), 113-141.
doi: 10.1051/mmnp/201510609. |
[19] |
M. Lewis, B. Li and H. Weinberger,
Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233.
doi: 10.1007/s002850200144. |
[20] |
W.-T. Li, L Zhang and G.-B. Zhang,
Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560.
doi: 10.3934/dcds.2015.35.1531. |
[21] |
T. Nguyen and Nar Rawal, Coexistence and extinction in time-periodic Volterra-Lotka type systems with nonlocal dispersal, Discrete Contin. Dyn. Syst., Series B, 23(9) (2018), 3799-3816.
doi: 10.3934/dcdsb.2018080. |
[22] |
Nar Rawal and W. Shen,
Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.
doi: 10.1007/s10884-012-9276-z. |
[23] |
W. Shen and A. Zhang,
Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, Journal of Differential Equations, 249 (2010), 749-795.
doi: 10.1016/j.jde.2010.04.012. |
[24] |
X. Yu and X.-Q. Zhao,
Propagation phenomena for a reaction-advection-diffusion competition model in a periodic habitat, J. Dynam. Differential Equations, 29 (2017), 41-66.
doi: 10.1007/s10884-015-9426-1. |
[25] |
G. Zhao and S. Ruan,
Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671.
doi: 10.1016/j.matpur.2010.11.005. |
show all references
References:
[1] |
X. Bao and Z.-C. Wang,
Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402-2435.
doi: 10.1016/j.jde.2013.06.024. |
[2] |
X. Bao, W.-T. Li and W. Shen,
Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637.
doi: 10.1016/j.jde.2016.02.032. |
[3] |
H. Berestycki, F. Hamel and L. Rossi,
Liouville-type results for semilinear elliptic equations in unbounded domains, Annali di Matematica, 186 (2007), 469-507.
doi: 10.1007/s10231-006-0015-0. |
[4] |
C. Conley and R. Gardner,
An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343.
doi: 10.1512/iumj.1984.33.33018. |
[5] |
S. R. Dunbar,
Traveling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.
doi: 10.1007/BF00276112. |
[6] |
J. Fang and X.-Q. Zhao,
Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.
doi: 10.1137/140953939. |
[7] |
J. Fang, X. Yu and X.-Q. Zhao,
Traveling waves and spreading speeds for time-space periodic monotone systems, J. Functional Analysis, 272 (2017), 4222-4262.
doi: 10.1016/j.jfa.2017.02.028. |
[8] |
J.-S. Guo and X. Liang,
The minimal speed of traveling fronts for Lotka-volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363.
doi: 10.1007/s10884-011-9214-5. |
[9] |
G. Hetzer, T. Nguyen and W. Shen,
Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722.
doi: 10.3934/cpaa.2012.11.1699. |
[10] |
G. Hetzer and W. Shen,
Uniform persistence, coexistence, and extinction in almost periodic/nonautonomous competition diffusion systems, SIAM J. Math. Anal., 34 (2002), 204-227.
doi: 10.1137/S0036141001390695. |
[11] |
G. Hetzer, W. Shen and A. Zhang,
Effects of spatial variations and dispersal strategies on principal eigenvalues of dispersal operators and spreading speeds of monostable equations, Rocky Mountain Journal of Mathematics, 43 (2013), 489-513.
doi: 10.1216/RMJ-2013-43-2-489. |
[12] |
Y. Hosono,
The minimal spread of traveling fronts for a diffusive Lotka-Volterra competition model, Bull. Math. Biol., 66 (1998), 435-448.
|
[13] |
W. Huang,
Problem on minimum wave speed for a Lotka-Volterra reaction diffusion competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.
doi: 10.1007/s10884-010-9159-0. |
[14] |
Y. Kan-on,
Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.
doi: 10.1137/S0036141093244556. |
[15] |
Y. Kan-on,
Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164.
doi: 10.1016/0362-546X(95)00142-I. |
[16] |
L. Kong and W. Shen,
Positive stationary solutions and spreading speeds of KPP equations in locally spatially inhomogeneous media, Methods Appl. Anal., 18 (2011), 427-456.
doi: 10.4310/MAA.2011.v18.n4.a5. |
[17] |
L. Kong and W. Shen,
Liouville type property and spreading speeds of KPP equations in periodic media with localized spatial inhomogeneity, J. Dynam. Differential Equations, 26 (2014), 181-215.
doi: 10.1007/s10884-014-9351-8. |
[18] |
L. Kong, N. Rawal and W. Shen,
Spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in periodic habitats, Math. Model. Nat. Phenom., 10 (2015), 113-141.
doi: 10.1051/mmnp/201510609. |
[19] |
M. Lewis, B. Li and H. Weinberger,
Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233.
doi: 10.1007/s002850200144. |
[20] |
W.-T. Li, L Zhang and G.-B. Zhang,
Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560.
doi: 10.3934/dcds.2015.35.1531. |
[21] |
T. Nguyen and Nar Rawal, Coexistence and extinction in time-periodic Volterra-Lotka type systems with nonlocal dispersal, Discrete Contin. Dyn. Syst., Series B, 23(9) (2018), 3799-3816.
doi: 10.3934/dcdsb.2018080. |
[22] |
Nar Rawal and W. Shen,
Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.
doi: 10.1007/s10884-012-9276-z. |
[23] |
W. Shen and A. Zhang,
Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, Journal of Differential Equations, 249 (2010), 749-795.
doi: 10.1016/j.jde.2010.04.012. |
[24] |
X. Yu and X.-Q. Zhao,
Propagation phenomena for a reaction-advection-diffusion competition model in a periodic habitat, J. Dynam. Differential Equations, 29 (2017), 41-66.
doi: 10.1007/s10884-015-9426-1. |
[25] |
G. Zhao and S. Ruan,
Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671.
doi: 10.1016/j.matpur.2010.11.005. |
[1] |
Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267 |
[2] |
Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441 |
[3] |
Yuanshi Wang, Hong Wu. Transition of interaction outcomes in a facilitation-competition system of two species. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1463-1475. doi: 10.3934/mbe.2017076 |
[4] |
Georg Hetzer, Wenxian Shen. Two species competition with an inhibitor involved. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 39-57. doi: 10.3934/dcds.2005.12.39 |
[5] |
Xinyu Tu, Chunlai Mu, Pan Zheng, Ke Lin. Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3617-3636. doi: 10.3934/dcds.2018156 |
[6] |
Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187 |
[7] |
Hans F. Weinberger, Kohkichi Kawasaki, Nanako Shigesada. Spreading speeds for a partially cooperative 2-species reaction-diffusion model. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1087-1098. doi: 10.3934/dcds.2009.23.1087 |
[8] |
Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208 |
[9] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 837-861. doi: 10.3934/dcdsb.2021067 |
[10] |
Hua Nie, Yuan Lou, Jianhua Wu. Competition between two similar species in the unstirred chemostat. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 621-639. doi: 10.3934/dcdsb.2016.21.621 |
[11] |
Chiu-Ju Lin. Competition of two phytoplankton species for light with wavelength. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 523-536. doi: 10.3934/dcdsb.2016.21.523 |
[12] |
Jifa Jiang, Fensidi Tang. The complete classification on a model of two species competition with an inhibitor. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 659-672. doi: 10.3934/dcds.2008.20.659 |
[13] |
Alan E. Lindsay, Michael J. Ward. An asymptotic analysis of the persistence threshold for the diffusive logistic model in spatial environments with localized patches. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1139-1179. doi: 10.3934/dcdsb.2010.14.1139 |
[14] |
Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213 |
[15] |
Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268 |
[16] |
Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 |
[17] |
Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691 |
[18] |
Kuang-Hui Lin, Yuan Lou, Chih-Wen Shih, Tze-Hung Tsai. Global dynamics for two-species competition in patchy environment. Mathematical Biosciences & Engineering, 2014, 11 (4) : 947-970. doi: 10.3934/mbe.2014.11.947 |
[19] |
S.A. Gourley, Yang Kuang. Two-Species Competition with High Dispersal: The Winning Strategy. Mathematical Biosciences & Engineering, 2005, 2 (2) : 345-362. doi: 10.3934/mbe.2005.2.345 |
[20] |
Xiaoqing He, Sze-Bi Hsu, Feng-Bin Wang. A periodic-parabolic Droop model for two species competition in an unstirred chemostat. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4427-4451. doi: 10.3934/dcds.2020185 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]