• Previous Article
    Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition
  • CPAA Home
  • This Issue
  • Next Article
    Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium
July  2019, 18(4): 1711-1734. doi: 10.3934/cpaa.2019081

Scattering results for Dirac Hartree-type equations with small initial data

1. 

Korea Institute for Advanced Study, Seoul 20455, Korea

2. 

Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 54896, Korea

Received  May 2018 Revised  September 2018 Published  January 2019

Fund Project: This work was partially supported by NRF (NRF-2015R1D1A1A09057795) and by German Science Foundation (IRTG 2235).

We consider the Dirac equations with cubic Hartree-type nonlinearity which are derived by uncoupling the Dirac-Klein-Gordon systems. We prove small data global well-posedness and scattering results in the full scaling subcritical regularity regime. The strategy of the proof relies on the localized Strichartz estimates and bilinear estimates in $ V^2 $ spaces, together with the use of the null structure that the nonlinear term exhibits. This result is shown to be almost optimal in the sense that the iteration method based on Duhamel's formula fails over the supercritical range.

Citation: Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081
References:
[1]

I. Bejenaru and S. Herr, The cubic Dirac equation: small initial data in $H^1(\Bbb R^3)$, Comm. Math. Phys., 335 (2015), 43-82.  doi: 10.1007/s00220-014-2164-0.

[2]

I. Bejenaru and S. Herr, On global well-posedness and scattering for the massive Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS), 19 (2017), 2445-2467.  doi: 10.4171/JEMS/721.

[3]

J. M. Chadam and R. T. Glassey, On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions, J. Math. Anal. Appl., 53 (1976), 495-507.  doi: 10.1016/0022-247X(76)90087-1.

[4]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.

[5]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.

[6]

P. D'Ancona and L. Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations, 33 (2008), 1082-1112.  doi: 10.1080/03605300701743749.

[7]

P. D'AnconaD. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS), 9 (2007), 877-899.  doi: 10.4171/JEMS/100.

[8]

J. a.-P. Dias and M. Figueira, On the existence of weak solutions for a nonlinear time dependent Dirac equation, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 149-158.  doi: 10.1017/S030821050002401X.

[9]

M. HadacS. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002.

[10]

M. Hadac, S. Herr and H. Koch, Erratum to "Well-posedness and scattering for the KP-II equation in a critical space", [Ann. I. H. Poincaré–AN 26 (3) (2009) 917–941], Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 971–972. doi: 10.1016/j.anihpc.2010.01.006.

[11]

S. Herr and E. Lenzmann, The Boson star equation with initial data of low regularity, Nonlinear Anal., 97 (2014), 125-137.  doi: 10.1016/j.na.2013.11.023.

[12]

S. Herr and A. Tesfahun, Small data scattering for semi-relativistic equations with Hartree type nonlinearity, J. Differential Equations, 259 (2015), 5510-5532.  doi: 10.1016/j.jde.2015.06.037.

[13]

S. Herr and C. Yang, Critical well-posedness and scattering results for fractional Hartree-type equations, Differential Integral Equations, 31 (2018), 701-714. 

[14]

H. Koch, D. Tataru and M. Vişan, Dispersive Equations and Nonlinear Waves. Generalized Korteweg-De Vries, Nonlinear SchrÖdinger, Wave and Schródinger Maps., Basel: Birkhäuser/Springer, 2014.

[15]

E. Lenzmann, Well-posedness for semi-relativistic hartree equations of critical type, Mathematical Physics, Analysis and Geometry, 10 (2007), 43-64.  doi: 10.1007/s11040-007-9020-9.

[16]

S. Machihara and K. Tsutaya, Scattering theory for the Dirac equation with a non-local term, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 867-878.  doi: 10.1017/S0308210507000479.

[17]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988 (electronic).  doi: 10.1137/S0036141001385307.

[18]

M. Nakamura and K. Tsutaya, Scattering theory for the Dirac equation of Hartree type and the semirelativistic Hartree equation, Nonlinear Anal., 75 (2012), 3531-3542.  doi: 10.1016/j.na.2012.01.012.

[19]

F. Pusateri, Modified scattering for the boson star equation, Commun. Math. Phys., 332 (2014), 1203-1234.  doi: 10.1007/s00220-014-2094-x.

[20]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, Ⅲ.

[21]

A. Tesfahun, Small data scattering for cubic Dirac equation with Hartree type nonlinearity in $ \mathbb R ^{1+3}$, arXiv e-prints.

[22]

C. Yang, Small data scattering of semirelativistic hartree equation, Nonlinear Analysis, 178 (2019), 41-55.  doi: 10.1016/j.na.2018.07.003.

show all references

References:
[1]

I. Bejenaru and S. Herr, The cubic Dirac equation: small initial data in $H^1(\Bbb R^3)$, Comm. Math. Phys., 335 (2015), 43-82.  doi: 10.1007/s00220-014-2164-0.

[2]

I. Bejenaru and S. Herr, On global well-posedness and scattering for the massive Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS), 19 (2017), 2445-2467.  doi: 10.4171/JEMS/721.

[3]

J. M. Chadam and R. T. Glassey, On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions, J. Math. Anal. Appl., 53 (1976), 495-507.  doi: 10.1016/0022-247X(76)90087-1.

[4]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.

[5]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.

[6]

P. D'Ancona and L. Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations, 33 (2008), 1082-1112.  doi: 10.1080/03605300701743749.

[7]

P. D'AnconaD. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS), 9 (2007), 877-899.  doi: 10.4171/JEMS/100.

[8]

J. a.-P. Dias and M. Figueira, On the existence of weak solutions for a nonlinear time dependent Dirac equation, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 149-158.  doi: 10.1017/S030821050002401X.

[9]

M. HadacS. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002.

[10]

M. Hadac, S. Herr and H. Koch, Erratum to "Well-posedness and scattering for the KP-II equation in a critical space", [Ann. I. H. Poincaré–AN 26 (3) (2009) 917–941], Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 971–972. doi: 10.1016/j.anihpc.2010.01.006.

[11]

S. Herr and E. Lenzmann, The Boson star equation with initial data of low regularity, Nonlinear Anal., 97 (2014), 125-137.  doi: 10.1016/j.na.2013.11.023.

[12]

S. Herr and A. Tesfahun, Small data scattering for semi-relativistic equations with Hartree type nonlinearity, J. Differential Equations, 259 (2015), 5510-5532.  doi: 10.1016/j.jde.2015.06.037.

[13]

S. Herr and C. Yang, Critical well-posedness and scattering results for fractional Hartree-type equations, Differential Integral Equations, 31 (2018), 701-714. 

[14]

H. Koch, D. Tataru and M. Vişan, Dispersive Equations and Nonlinear Waves. Generalized Korteweg-De Vries, Nonlinear SchrÖdinger, Wave and Schródinger Maps., Basel: Birkhäuser/Springer, 2014.

[15]

E. Lenzmann, Well-posedness for semi-relativistic hartree equations of critical type, Mathematical Physics, Analysis and Geometry, 10 (2007), 43-64.  doi: 10.1007/s11040-007-9020-9.

[16]

S. Machihara and K. Tsutaya, Scattering theory for the Dirac equation with a non-local term, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 867-878.  doi: 10.1017/S0308210507000479.

[17]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988 (electronic).  doi: 10.1137/S0036141001385307.

[18]

M. Nakamura and K. Tsutaya, Scattering theory for the Dirac equation of Hartree type and the semirelativistic Hartree equation, Nonlinear Anal., 75 (2012), 3531-3542.  doi: 10.1016/j.na.2012.01.012.

[19]

F. Pusateri, Modified scattering for the boson star equation, Commun. Math. Phys., 332 (2014), 1203-1234.  doi: 10.1007/s00220-014-2094-x.

[20]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, Ⅲ.

[21]

A. Tesfahun, Small data scattering for cubic Dirac equation with Hartree type nonlinearity in $ \mathbb R ^{1+3}$, arXiv e-prints.

[22]

C. Yang, Small data scattering of semirelativistic hartree equation, Nonlinear Analysis, 178 (2019), 41-55.  doi: 10.1016/j.na.2018.07.003.

[1]

Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations and Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002

[2]

Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic and Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019

[3]

Tsukasa Iwabuchi, Kota Uriya. Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity $|u|^2$. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1395-1405. doi: 10.3934/cpaa.2015.14.1395

[4]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[5]

Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565

[6]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[7]

In-Jee Jeong, Benoit Pausader. Discrete Schrödinger equation and ill-posedness for the Euler equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 281-293. doi: 10.3934/dcds.2017012

[8]

Qingxuan Wang, Binhua Feng, Yuan Li, Qihong Shi. On Asymptotic Properties of Semi-relativistic Hartree Equation with combined Hartree-type nonlinearities. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1225-1247. doi: 10.3934/cpaa.2022017

[9]

Adán J. Corcho. Ill-Posedness for the Benney system. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 965-972. doi: 10.3934/dcds.2006.15.965

[10]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[12]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[13]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[14]

Yannis Angelopoulos. Well-posedness and ill-posedness results for the Novikov-Veselov equation. Communications on Pure and Applied Analysis, 2016, 15 (3) : 727-760. doi: 10.3934/cpaa.2016.15.727

[15]

Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems and Imaging, 2015, 9 (2) : 395-413. doi: 10.3934/ipi.2015.9.395

[16]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[17]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

[18]

Kiyeon Lee. Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3683-3702. doi: 10.3934/cpaa.2021126

[19]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[20]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (238)
  • HTML views (195)
  • Cited by (1)

Other articles
by authors

[Back to Top]