July  2019, 18(4): 1783-1826. doi: 10.3934/cpaa.2019084

Existence and regularity of solutions for an evolution model of perfectly plastic plates

1. 

Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy

2. 

Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy

3. 

Dipartimento di Matematica Guido Castelnuovo, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy

Received  June 2018 Revised  November 2018 Published  January 2019

We continue the study of a dynamic evolution model for perfectly plastic plates, recently derived in [19] from three-dimensional Prandtl-Reuss plasticity. We extend the previous existence result by introducing non-zero external forces in the model, and we discuss the regularity of the solutions thus obtained. In particular, we show that the first derivatives with respect to space of the stress tensor are locally square integrable.

Citation: P. Gidoni, G. B. Maggiani, R. Scala. Existence and regularity of solutions for an evolution model of perfectly plastic plates. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1783-1826. doi: 10.3934/cpaa.2019084
References:
[1]

H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.

[2]

J. F. Babadjian and M. G. Mora, Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion, Journal of Differential Equations, 264 (2018), 5109-5151.  doi: 10.1016/j.jde.2017.12.034.

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

[4]

A. Bensoussan and J. Frehse, Asymptotic behaviour of the time-dependent Norton Hoff law in plasticity theory and $H^1$ regularity, Comment. Math. Univ. Carolinae, 37 (1996), 285-304. 

[5]

H. Brezis, Opérateurs maximaux monotones et semi-groupes de constractions dans les espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973.

[6]

P. Ciarlet, Mathematical Elasticity. Vol II. Theory of Plates, Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, 1997.

[7]

G. Dal MasoA. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291.  doi: 10.1007/s00205-005-0407-0.

[8]

E. Davoli and M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by $\Gamma$-convergence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 615-660.  doi: 10.1016/j.anihpc.2012.11.001.

[9]

E. Davoli and M. G. Mora, Stress regularity for a new quasistatic evolution model of perfectly plastic plates, Calc. Var. Partial Differential Equations, 54 (2015), 2581-2614.  doi: 10.1007/s00526-015-0876-4.

[10]

F. Demengel, Fonctions à hessien borné, Ann. Inst. Fourier (Grénoble), 34 (1984), 155-190.

[11]

A. Demyanov, Regularity of stresses in Prandtl-Reuss plasticity, Calc. Var. Partial Differential Equations, 34 (2009), 23-72.  doi: 10.1007/s00526-008-0174-5.

[12]

A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅰ. Existence of a weak solution, Math. Models Methods Appl. Sci., 19 (2009), 229-256.  doi: 10.1142/S0218202509003413.

[13]

A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅱ. Regularity of bending moments, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2137-2163.  doi: 10.1016/j.anihpc.2009.01.006.

[14]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics Appl. Math., vol. 28, SIAM, Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.

[15]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011. doi: 10.1007/978-0-387-09620-9.

[16]

R. V. Kohn and R. Temam, Dual spaces of stresses and strains, with application to Hencky plasticity, Appl. Math. Optim., 10 (1983), 1-35.  doi: 10.1007/BF01448377.

[17]

J.Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990.

[18]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.

[19]

G. B. Maggiani and M. G. Mora, A dynamic evolution model for perfectly plastic plates, Math. Models Methods Appl. Sci., 26 (2016), 1825-1864.  doi: 10.1142/S0218202516500469.

[20]

A. Mielke and T. Roubíček, Rate-independent Systems. Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.

[21]

R. T. Rockafellar, Convex Integral Functionals and Duality, in Contributions to Nonlinear Functional Analysis, Academic Press, (1971), 215-236.

[22]

P. M. Suquet, Sur le équations de la plasticité: existence et regularité des solutions, J. Mécanique, 20 (1981), 3-39.

[23]

R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985.

show all references

References:
[1]

H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.

[2]

J. F. Babadjian and M. G. Mora, Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion, Journal of Differential Equations, 264 (2018), 5109-5151.  doi: 10.1016/j.jde.2017.12.034.

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

[4]

A. Bensoussan and J. Frehse, Asymptotic behaviour of the time-dependent Norton Hoff law in plasticity theory and $H^1$ regularity, Comment. Math. Univ. Carolinae, 37 (1996), 285-304. 

[5]

H. Brezis, Opérateurs maximaux monotones et semi-groupes de constractions dans les espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973.

[6]

P. Ciarlet, Mathematical Elasticity. Vol II. Theory of Plates, Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, 1997.

[7]

G. Dal MasoA. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291.  doi: 10.1007/s00205-005-0407-0.

[8]

E. Davoli and M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by $\Gamma$-convergence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 615-660.  doi: 10.1016/j.anihpc.2012.11.001.

[9]

E. Davoli and M. G. Mora, Stress regularity for a new quasistatic evolution model of perfectly plastic plates, Calc. Var. Partial Differential Equations, 54 (2015), 2581-2614.  doi: 10.1007/s00526-015-0876-4.

[10]

F. Demengel, Fonctions à hessien borné, Ann. Inst. Fourier (Grénoble), 34 (1984), 155-190.

[11]

A. Demyanov, Regularity of stresses in Prandtl-Reuss plasticity, Calc. Var. Partial Differential Equations, 34 (2009), 23-72.  doi: 10.1007/s00526-008-0174-5.

[12]

A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅰ. Existence of a weak solution, Math. Models Methods Appl. Sci., 19 (2009), 229-256.  doi: 10.1142/S0218202509003413.

[13]

A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅱ. Regularity of bending moments, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2137-2163.  doi: 10.1016/j.anihpc.2009.01.006.

[14]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics Appl. Math., vol. 28, SIAM, Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.

[15]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011. doi: 10.1007/978-0-387-09620-9.

[16]

R. V. Kohn and R. Temam, Dual spaces of stresses and strains, with application to Hencky plasticity, Appl. Math. Optim., 10 (1983), 1-35.  doi: 10.1007/BF01448377.

[17]

J.Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990.

[18]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.

[19]

G. B. Maggiani and M. G. Mora, A dynamic evolution model for perfectly plastic plates, Math. Models Methods Appl. Sci., 26 (2016), 1825-1864.  doi: 10.1142/S0218202516500469.

[20]

A. Mielke and T. Roubíček, Rate-independent Systems. Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.

[21]

R. T. Rockafellar, Convex Integral Functionals and Duality, in Contributions to Nonlinear Functional Analysis, Academic Press, (1971), 215-236.

[22]

P. M. Suquet, Sur le équations de la plasticité: existence et regularité des solutions, J. Mécanique, 20 (1981), 3-39.

[23]

R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985.

[1]

Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193

[2]

Francesco Solombrino. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1189-1217. doi: 10.3934/dcds.2010.27.1189

[3]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks and Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567

[4]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control and Related Fields, 2022, 12 (2) : 275-301. doi: 10.3934/mcrf.2021022

[5]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[6]

Gianni Dal Maso, Francesco Solombrino. Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case. Networks and Heterogeneous Media, 2010, 5 (1) : 97-132. doi: 10.3934/nhm.2010.5.97

[7]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[8]

Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems and Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43

[9]

Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887

[10]

Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379

[11]

Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2271-2292. doi: 10.3934/dcdsb.2019227

[12]

Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002

[13]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[14]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[15]

M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure and Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557

[16]

Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43

[17]

Emile Franc Doungmo Goufo. Bounded perturbation for evolution equations with a parameter & application to population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2137-2150. doi: 10.3934/dcdss.2020177

[18]

Alessandro Giacomini. On the energetic formulation of the Gurtin and Anand model in strain gradient plasticity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 527-552. doi: 10.3934/dcdsb.2012.17.527

[19]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure and Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[20]

Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (228)
  • HTML views (183)
  • Cited by (0)

Other articles
by authors

[Back to Top]