-
Previous Article
Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system
- CPAA Home
- This Issue
-
Next Article
Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $
A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production
1. | College of Science, Donghua University, Shanghai 200051, China |
2. | Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany |
$ \begin{eqnarray*} \left\{ \begin{array}{l} u_t = \Delta u - \chi \nabla \cdot (u\nabla v) - \xi \nabla \cdot (u\nabla w) + \mu u(1-u-w), \\ v_t = \Delta v-v+f(u), \\ w_t = -vw+\eta w(1-u-w), \end{array} \right. \end{eqnarray*} $ |
$ \Omega\subset \mathbb{R} ^n $ |
$ \chi, \xi, \mu $ |
$ \eta $ |
$ f \in C^1([0,\infty)) $ |
$ f(0) \ge 0 $ |
$ \begin{eqnarray*} f(s) \le K_f (s+1)^\alpha \qquad \mbox{for all } s\ge 0 \end{eqnarray*} $ |
$ K_f >0 $ |
$ \alpha>0 $ |
$ \begin{eqnarray*} \alpha < \left\{ \begin{array}{ll} \frac{3}{2} \qquad & \mbox{if } n = 1, \\ \frac{n+6}{2(n+2)} \qquad & \mbox{if } n\ge 2, \end{array} \right. \end{eqnarray*} $ |
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763.
doi: 10.1142/S021820251550044X. |
[2] |
X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis system, Z. Angew. Math. Phys., 67 (2016), 11.
doi: 10.1007/s00033-015-0601-3. |
[3] |
Z. Chen and Y. Tao, Large-data solution in a three-dimensional chemotaxis-haptotaxis system with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Appl Math, (2018).
doi: 10.1007/s10440-018-0216-8. |
[4] |
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 18 (2005), 1685–1734.
doi: 10.1142/S0218202505000947. |
[5] |
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399–439.
doi: 10.3934/nhm.2006.1.399. |
[6] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355.
doi: 10.1137/S0036141001385046. |
[7] |
A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138–163.
doi: 10.1016/S0022-247X(02)00147-6. |
[8] |
Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72–94.
doi: 10.1016/0022-1236(91)90136-S. |
[9] |
M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647–1669.
doi: 10.1080/03605309708821314. |
[10] |
T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Mod. Meth. Appl. Sci., 23 (2013), 165–198.
doi: 10.1142/S0218202512500480. |
[11] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Eq., 215 (2005), 52–107.
doi: 10.1016/j.jde.2004.10.022. |
[12] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl., 23 (1968), Providence, RI. |
[13] |
Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564–1595.
doi: 10.1088/0951-7715/29/5/1564. |
[14] |
P. L. Lions, Résolution de problémes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335–353.
doi: 10.1007/BF00249679. |
[15] |
P. Y. H. Pang and Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 263 (2017), 1269–1292.
doi: 10.1016/j.jde.2017.03.016. |
[16] |
P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Mod. Meth. Appl. Sci., 28 (2018), 2211–2235.
doi: 10.1142/S0218202518400134. |
[17] |
C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007.
doi: 10.1137/13094058X. |
[18] |
Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60–69.
doi: 10.1016/j.jmaa.2008.12.039. |
[19] |
Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, arXiv: 1407.7382v1. |
[20] |
Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533–1558.
doi: 10.1137/090751542. |
[21] |
Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinb. Sect A, 144 (2014), 1067–1084.
doi: 10.1017/S0308210512000571. |
[22] |
Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225–1239.
doi: 10.1088/0951-7715/27/6/1225. |
[23] |
Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 257 (2014), 784–815.
doi: 10.1016/j.jde.2014.04.014. |
[24] |
Y. Tao and M. Winkler, Large time behavior in a mutidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229–4250.
doi: 10.1137/15M1014115. |
[25] |
C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694–1713.
doi: 10.1137/060655122. |
[26] |
L. Wang, C. Mu, X. Hu and Y. Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Math. Meth. Appl. Sci., 40 (2017), 3000–3016.
doi: 10.1002/mma.4216. |
[27] |
Y. Wang and Y. Ke, Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions, J. Differential Equations, 260 (2016), 6960–6988.
doi: 10.1016/j.jde.2016.01.017. |
[28] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Eq., 248 (2010), 2889–2905.
doi: 10.1016/j.jde.2010.02.008. |
[29] |
M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differential Eq., 264 (2018), 6109–6151.
doi: 10.1016/j.jde.2018.01.027. |
[30] |
M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, Preprint. |
[31] |
J. Zheng, Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discr. Cont. Dyn. Syst., 37 (2017), 627–643.
doi: 10.3934/dcds.2017026. |
show all references
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763.
doi: 10.1142/S021820251550044X. |
[2] |
X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis system, Z. Angew. Math. Phys., 67 (2016), 11.
doi: 10.1007/s00033-015-0601-3. |
[3] |
Z. Chen and Y. Tao, Large-data solution in a three-dimensional chemotaxis-haptotaxis system with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Appl Math, (2018).
doi: 10.1007/s10440-018-0216-8. |
[4] |
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 18 (2005), 1685–1734.
doi: 10.1142/S0218202505000947. |
[5] |
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399–439.
doi: 10.3934/nhm.2006.1.399. |
[6] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355.
doi: 10.1137/S0036141001385046. |
[7] |
A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138–163.
doi: 10.1016/S0022-247X(02)00147-6. |
[8] |
Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72–94.
doi: 10.1016/0022-1236(91)90136-S. |
[9] |
M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647–1669.
doi: 10.1080/03605309708821314. |
[10] |
T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Mod. Meth. Appl. Sci., 23 (2013), 165–198.
doi: 10.1142/S0218202512500480. |
[11] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Eq., 215 (2005), 52–107.
doi: 10.1016/j.jde.2004.10.022. |
[12] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl., 23 (1968), Providence, RI. |
[13] |
Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564–1595.
doi: 10.1088/0951-7715/29/5/1564. |
[14] |
P. L. Lions, Résolution de problémes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335–353.
doi: 10.1007/BF00249679. |
[15] |
P. Y. H. Pang and Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 263 (2017), 1269–1292.
doi: 10.1016/j.jde.2017.03.016. |
[16] |
P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Mod. Meth. Appl. Sci., 28 (2018), 2211–2235.
doi: 10.1142/S0218202518400134. |
[17] |
C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007.
doi: 10.1137/13094058X. |
[18] |
Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60–69.
doi: 10.1016/j.jmaa.2008.12.039. |
[19] |
Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, arXiv: 1407.7382v1. |
[20] |
Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533–1558.
doi: 10.1137/090751542. |
[21] |
Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinb. Sect A, 144 (2014), 1067–1084.
doi: 10.1017/S0308210512000571. |
[22] |
Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225–1239.
doi: 10.1088/0951-7715/27/6/1225. |
[23] |
Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 257 (2014), 784–815.
doi: 10.1016/j.jde.2014.04.014. |
[24] |
Y. Tao and M. Winkler, Large time behavior in a mutidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229–4250.
doi: 10.1137/15M1014115. |
[25] |
C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694–1713.
doi: 10.1137/060655122. |
[26] |
L. Wang, C. Mu, X. Hu and Y. Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Math. Meth. Appl. Sci., 40 (2017), 3000–3016.
doi: 10.1002/mma.4216. |
[27] |
Y. Wang and Y. Ke, Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions, J. Differential Equations, 260 (2016), 6960–6988.
doi: 10.1016/j.jde.2016.01.017. |
[28] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Eq., 248 (2010), 2889–2905.
doi: 10.1016/j.jde.2010.02.008. |
[29] |
M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differential Eq., 264 (2018), 6109–6151.
doi: 10.1016/j.jde.2018.01.027. |
[30] |
M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, Preprint. |
[31] |
J. Zheng, Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discr. Cont. Dyn. Syst., 37 (2017), 627–643.
doi: 10.3934/dcds.2017026. |
[1] |
Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737 |
[2] |
Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035 |
[3] |
Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324 |
[4] |
Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069 |
[5] |
Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133 |
[6] |
Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328 |
[7] |
Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045 |
[8] |
Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026 |
[9] |
Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064 |
[10] |
Changchun Liu, Pingping Li. Global existence for a chemotaxis-haptotaxis model with $ p $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1399-1419. doi: 10.3934/cpaa.2020070 |
[11] |
Runlin Hu, Pan Zheng, Zhangqin Gao. Boundedness of solutions in a quasilinear chemo-repulsion system with nonlinear signal production. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022018 |
[12] |
Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037 |
[13] |
Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6419-6444. doi: 10.3934/dcdsb.2019145 |
[14] |
Runlin Hu, Pan Zheng. On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022041 |
[15] |
Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 211-232. doi: 10.3934/dcdss.2020012 |
[16] |
Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262 |
[17] |
Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189 |
[18] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[19] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[20] |
Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]