September  2019, 18(5): 2199-2215. doi: 10.3934/cpaa.2019099

Ground state solutions for fractional scalar field equations under a general critical nonlinearity

1. 

Universidade Federal de Campina Grande, 58429-970, Campina Grande - PB - Brazil

2. 

Universidade de Brasilia, Campus Universitário Darcy Ribeiro, 70910-900, Brasília - DF - Brazil

3. 

Universidade de São Paulo, Departamento de Matemática - IME, Rua do Matão 1010, 05508-090, São Paulo - SP - Brazil

* Corresponding author

Received  June 2017 Revised  November 2017 Published  April 2019

Fund Project: The first author is supported was partially supported by CNPq/Brazil Proc. 304036/2013-7; the second author was partially supported by CNPq, Capes and FAPDF, Brazil; the third author was partially supported by CNPq, Capes and FAPESP, Brazil.

In this paper we study existence of ground state solution to the following problem
$ (- \Delta)^{\alpha}u = g(u) \ \ \mbox{in} \ \ \mathbb{R}^{N}, \ \ u \in H^{\alpha}(\mathbb R^N) $
where
$ (-\Delta)^{\alpha} $
is the fractional Laplacian,
$ \alpha\in (0,1) $
. We treat both cases
$ N\geq2 $
and
$ N = 1 $
with
$ \alpha = 1/2 $
. The function
$ g $
is a general nonlinearity of Berestycki-Lions type which is allowed to have critical growth: polynomial in case
$ N\geq2 $
, exponential if
$ N = 1 $
.
Citation: Claudianor O. Alves, Giovany M. Figueiredo, Gaetano Siciliano. Ground state solutions for fractional scalar field equations under a general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2199-2215. doi: 10.3934/cpaa.2019099
References:
[1]

C. O. AlvesM. Montenegro and M. A. Souto, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. and PDEs, 43 (2012), 537-554.  doi: 10.1007/s00526-011-0422-y.

[2]

C. O. AlvesJ. M do Ó and O. H. Miyagaki, Concentration phenomena for fractional elliptic equations involving exponential critical growth, Adv. Nonlinear Stud., 16 (2016), 843-861.  doi: 10.1515/ans-2016-0097.

[3]

V. Ambrosio, Zero mass case for a fractional Beresticky-Lions type results, Adv. Nonlinear Anal., 7 (2018), 365-374. 

[4]

A unified approach to symmetrization, Partial Differential Equations of Elliptic Type, Symposia Mathematica, Vol. XXXV, Cambridge Univ. Press, 1994, pp. 47–91.

[5]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex nonlinearities, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.

[6]

H. Berestycki and P. L. Lions, Nonlinear Scalar Field, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[7]

H. BerestyckiT. Gallouet and O. Kavian, Equations de Champs scalaires euclidiens non linéaires dans le plan., C. R. Acad. Sci. Paris Ser. I Math., 297 (1984), 307-310. 

[8]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana 20. Cham: Springer; Bologna: UMI (ISBN 978-3-319-28738-6/pbk; 978-3-319-28739-3/ebook). ⅹⅱ, 155 p. (2016). doi: 10.1007/978-3-319-28739-3.

[9]

D. M. Cao, Nonlinear solutions of semilinear elliptic equations with critical exponent in $\mathbb{R}^2$, Comm. Part. Diff. Equat., 17 (1992), 407-435.  doi: 10.1080/03605309208820848.

[10]

X. Chang and Z-Q Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494.  doi: 10.1088/0951-7715/26/2/479.

[11]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 512-573.  doi: 10.1016/j.bulsci.2011.12.004.

[12]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^n$, Lecture Notes. Appunti. Edizioni della Normale, Scuola Normale di Pisa (2017), arXiv: 1506.01748. doi: 10.1007/978-88-7642-601-8.

[13]

S. DipierroM. MedinaI. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb R^{n}$, Manuscripta Mathematica, (2016).  doi: 10.1007/s00229-016-0878-3.

[14]

J. M. do ÓO. H. Miyagaki and M. Squassina, Ground states of nonlocal scalar field equations with Trudinger-Moser critical nonlinearity, Topol. Methods Nonlinear Anal., 48 (2016), 477-492.  doi: 10.12775/tmna.2016.045.

[15]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-355.  doi: 10.1016/0022-247X(74)90025-0.

[16]

R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb R$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.

[17]

P. FelmerA. Quass and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.

[18]

A. Iannizzotto and M. Squassina, 1/2-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372-385.  doi: 10.1016/j.jmaa.2013.12.059.

[19]

A. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbb R^N$, Proc. Amer. Math. Soc., 131 (2002), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.

[20]

R. LehrerL. A. Maia and M. Squassina, Asymptotically linear fractional Schrödinger equations, Complex Variables and Elliptic Equations: An International Journal, 60 (2015), 529-558.  doi: 10.1080/17476933.2014.948434.

[21]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part Ⅰ., Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (1984), 109-145. 

[22]

P. L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Analysis, 49 (1982), 315-334.  doi: 10.1016/0022-1236(82)90072-6.

[23]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var., 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.

[24]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.

[25]

M. Willem, Minimax Theorems, Birkhäuser, Boston doi: 10.1007/978-1-4612-4146-1.

[26]

J. Zhang and W. Zou, A Berestycki-Lions theorem revisited, Comm. Contemp. Math, 16 (14), 1250033-1.  doi: 10.1142/S0219199712500332.

[27]

J. J. ZhangJ. M. do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Advanced Nonlinear Studies, 16 (2016), 15-30.  doi: 10.1515/ans-2015-5024.

show all references

References:
[1]

C. O. AlvesM. Montenegro and M. A. Souto, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. and PDEs, 43 (2012), 537-554.  doi: 10.1007/s00526-011-0422-y.

[2]

C. O. AlvesJ. M do Ó and O. H. Miyagaki, Concentration phenomena for fractional elliptic equations involving exponential critical growth, Adv. Nonlinear Stud., 16 (2016), 843-861.  doi: 10.1515/ans-2016-0097.

[3]

V. Ambrosio, Zero mass case for a fractional Beresticky-Lions type results, Adv. Nonlinear Anal., 7 (2018), 365-374. 

[4]

A unified approach to symmetrization, Partial Differential Equations of Elliptic Type, Symposia Mathematica, Vol. XXXV, Cambridge Univ. Press, 1994, pp. 47–91.

[5]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex nonlinearities, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.

[6]

H. Berestycki and P. L. Lions, Nonlinear Scalar Field, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[7]

H. BerestyckiT. Gallouet and O. Kavian, Equations de Champs scalaires euclidiens non linéaires dans le plan., C. R. Acad. Sci. Paris Ser. I Math., 297 (1984), 307-310. 

[8]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana 20. Cham: Springer; Bologna: UMI (ISBN 978-3-319-28738-6/pbk; 978-3-319-28739-3/ebook). ⅹⅱ, 155 p. (2016). doi: 10.1007/978-3-319-28739-3.

[9]

D. M. Cao, Nonlinear solutions of semilinear elliptic equations with critical exponent in $\mathbb{R}^2$, Comm. Part. Diff. Equat., 17 (1992), 407-435.  doi: 10.1080/03605309208820848.

[10]

X. Chang and Z-Q Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494.  doi: 10.1088/0951-7715/26/2/479.

[11]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 512-573.  doi: 10.1016/j.bulsci.2011.12.004.

[12]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^n$, Lecture Notes. Appunti. Edizioni della Normale, Scuola Normale di Pisa (2017), arXiv: 1506.01748. doi: 10.1007/978-88-7642-601-8.

[13]

S. DipierroM. MedinaI. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb R^{n}$, Manuscripta Mathematica, (2016).  doi: 10.1007/s00229-016-0878-3.

[14]

J. M. do ÓO. H. Miyagaki and M. Squassina, Ground states of nonlocal scalar field equations with Trudinger-Moser critical nonlinearity, Topol. Methods Nonlinear Anal., 48 (2016), 477-492.  doi: 10.12775/tmna.2016.045.

[15]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-355.  doi: 10.1016/0022-247X(74)90025-0.

[16]

R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb R$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.

[17]

P. FelmerA. Quass and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.

[18]

A. Iannizzotto and M. Squassina, 1/2-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372-385.  doi: 10.1016/j.jmaa.2013.12.059.

[19]

A. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbb R^N$, Proc. Amer. Math. Soc., 131 (2002), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.

[20]

R. LehrerL. A. Maia and M. Squassina, Asymptotically linear fractional Schrödinger equations, Complex Variables and Elliptic Equations: An International Journal, 60 (2015), 529-558.  doi: 10.1080/17476933.2014.948434.

[21]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part Ⅰ., Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (1984), 109-145. 

[22]

P. L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Analysis, 49 (1982), 315-334.  doi: 10.1016/0022-1236(82)90072-6.

[23]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var., 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.

[24]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.

[25]

M. Willem, Minimax Theorems, Birkhäuser, Boston doi: 10.1007/978-1-4612-4146-1.

[26]

J. Zhang and W. Zou, A Berestycki-Lions theorem revisited, Comm. Contemp. Math, 16 (14), 1250033-1.  doi: 10.1142/S0219199712500332.

[27]

J. J. ZhangJ. M. do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Advanced Nonlinear Studies, 16 (2016), 15-30.  doi: 10.1515/ans-2015-5024.

[1]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[2]

Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126

[3]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[4]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29 (5) : 3281-3295. doi: 10.3934/era.2021038

[5]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[6]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[7]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[8]

Hui Zhang, Jun Wang, Fubao Zhang. Semiclassical states for fractional Choquard equations with critical growth. Communications on Pure and Applied Analysis, 2019, 18 (1) : 519-538. doi: 10.3934/cpaa.2019026

[9]

Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160

[10]

Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236

[11]

Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029

[12]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[13]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure and Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[14]

Sami Aouaoui. On some semilinear equation in $R^4$ containing a Laplacian term and involving nonlinearity with exponential growth. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2185-2201. doi: 10.3934/cpaa.2015.14.2185

[15]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[16]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[17]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[18]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[19]

Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations and Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027

[20]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (326)
  • HTML views (231)
  • Cited by (1)

[Back to Top]