This paper is concerned with the long-time behavior of solutions for the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Thanks to the strong coupling at the boundary, it is very difficult to obtain the uniqueness of an energy solution for problem (1)-(3) even in two dimension. To overcome this difficulty, inspired by the idea of Sell's radical approach (see [
Citation: |
[1] |
H. Abels, Long-time behavior of solutions of a Navier-Stokes/Cahn-Hilliard system, Proceedings of the Conference Nonlocal and Abstract Parabolic Equations and their Applications, Bedlewo, Banach Center Publications, 86 (2009), 9-19.
doi: 10.4064/bc86-0-1.![]() ![]() ![]() |
[2] |
H. Abels, On a diffusive interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506.
doi: 10.1007/s00205-008-0160-2.![]() ![]() ![]() |
[3] |
H. Abels, Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow, SIAM J. Math. Anal., 44 (2012), 316-340.
doi: 10.1137/110829246.![]() ![]() ![]() |
[4] |
H. Abels and E. Feireisl, On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J., 57 (2008), 659-698.
doi: 10.1512/iumj.2008.57.3391.![]() ![]() ![]() |
[5] |
D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139-165.
doi: 10.1146/annurev.fluid.30.1.139.![]() ![]() ![]() |
[6] |
V. E. Badalassi, H. D. Ceniceros and S. Banerjee, Computation of multiphase systems with phase field models, J. Comput. Phys., 190 (2003), 371-397.
doi: 10.1016/S0021-9991(03)00280-8.![]() ![]() ![]() |
[7] |
J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502.
doi: 10.1007/s003329900037.![]() ![]() ![]() |
[8] |
K. Bao, Y. Shi, S. Sun and X. P. Wang, A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems, J. Comput. Phys., 231 (2012), 8083-8099.
doi: 10.1016/j.jcp.2012.07.027.![]() ![]() ![]() |
[9] |
A. Berti, V. Berti and D. Grandi, Well-posedness of an isothermal diffusive model for binary mixtures of incompressible fluids, Nonlinearity, 24 (2011), 3143-3164.
doi: 10.1088/0951-7715/24/11/008.![]() ![]() ![]() |
[10] |
T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flows, J. Phy. D: Appl. Phys., 32 (1999), 1119-1123.
![]() |
[11] |
S. Bosia and S. Gatti, Pullback exponential attractor for a Cahn-Hilliard-Navier-Stokes system in 2D, Dyn. Partial Differ. Equ., 11 (2014), 1-38.
doi: 10.4310/DPDE.2014.v11.n1.a1.![]() ![]() ![]() |
[12] |
S. Bosia, M. Grasselli and A. Miranville, On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures, Math. Methods Appl. Sci., 37 (2014), 726-743.
doi: 10.1002/mma.2832.![]() ![]() ![]() |
[13] |
F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal., 20 (1999), 175-212.
![]() ![]() |
[14] |
F. Boyer, Nonhomogenous Cahn-Hilliard fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 225-259.
doi: 10.1016/S0294-1449(00)00063-9.![]() ![]() ![]() |
[15] |
F. Boyer, Atheoretical and numerical model for the study of incompressiblemodel flows, Computers and Fluids, 31 (2002), 41-68.
![]() |
[16] |
C. S. Cao and C. G. Gal, Global solutions for the 2D Navier-Stokes-Cahn-Hilliard model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity, 25 (2012), 3211-3234.
doi: 10.1088/0951-7715/25/11/3211.![]() ![]() ![]() |
[17] |
R. Chella and J. Vinals, Mixing of a two-phase fluid by a cavity flow, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 53 (1996), 3832-3840.
![]() |
[18] |
A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754.
doi: 10.1016/j.jde.2006.08.021.![]() ![]() ![]() |
[19] |
N. J. Cutland and H. J. Keisler, Attractors and neo-attractors for 3D stochastic Navier-Stokes equations, Stoch. Dyn., 5 (2005), 487-533.
doi: 10.1142/S0219493705001559.![]() ![]() ![]() |
[20] |
E. B. DussanV, The moving contact line: the slip boundary condition, J. Fluid Mech., 77 (1976), 665-684.
![]() |
[21] |
E. B. DussanV and S. H. Davis, On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech., 65 (1974), 71-95.
![]() |
[22] |
X. B. Feng, Fully discrete element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44 (2006), 1049-1072.
doi: 10.1137/050638333.![]() ![]() ![]() |
[23] |
X. B. Feng, Y. N. He and C. Liu, Analysis of finite element approximations of a phase field model for two-phase fluids, Math. Comp., 76 (2007), 539-571.
doi: 10.1090/S0025-5718-06-01915-6.![]() ![]() ![]() |
[24] |
C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.
doi: 10.1016/j.anihpc.2009.11.013.![]() ![]() ![]() |
[25] |
C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678.
doi: 10.1007/s11401-010-0603-6.![]() ![]() ![]() |
[26] |
C. G. Gal and M. Grasselli, Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system, Phys. D, 240 (2011), 629-635.
doi: 10.1016/j.physd.2010.11.014.![]() ![]() ![]() |
[27] |
C. G. Gal, M. Grasselli and A. Miranville, Cahn-Hilliard-Navier-Stokes system with moving contact lines, Calc. Var. Partial Differential Equations, 55 (2016), 1-47.
doi: 10.1007/s00526-016-0992-9.![]() ![]() ![]() |
[28] |
M. Gao and X. P. Wang, A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231 (2012), 1372-1386.
doi: 10.1016/j.jcp.2011.10.015.![]() ![]() ![]() |
[29] |
M. E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831.
doi: 10.1142/S0218202596000341.![]() ![]() ![]() |
[30] |
M. Heida, On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system, Internat. J. Engrg. Sci., 62 (2013), 126-156.
doi: 10.1016/j.ijengsci.2012.09.005.![]() ![]() ![]() |
[31] |
M. Heida, J. Málek and K. R. Rajagopal, On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework, Z. Angew. Math. Phys., 63 (2012), 145-169.
doi: 10.1007/s00033-011-0139-y.![]() ![]() ![]() |
[32] |
M. Hintermuller and D. Wegner, Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system, SIAM J. Control Optim., 52 (2014), 747-772.
doi: 10.1137/120865628.![]() ![]() ![]() |
[33] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena, Rev. Modern Phys., 49 (1977), 435-479.
![]() |
[34] |
D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modelling, J. Comput. Phys., 155 (1999), 96-127.
doi: 10.1006/jcph.1999.6332.![]() ![]() ![]() |
[35] |
D. Jasnow and J. Vinals, Coarse-grained description of thermo-capillary flow, Phys. Fluids, 8 (1996), 660-669.
![]() |
[36] |
D. Kay, V. Styles and R. Welford, Finite element approximation of a Cahn-Hilliard-Navier-Stokes system, Interfaces Free Bound, 10 (2008), 15-43.
doi: 10.4171/IFB/178.![]() ![]() ![]() |
[37] |
D. Kay and R. Welford, Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D, SIAM J. Sci. Comput., 29 (2007), 2241-2257.
doi: 10.1137/050648110.![]() ![]() ![]() |
[38] |
J. Kim, Phase-field models for multi-component fluid flows, Commun. Comput. Phys., 12 (2012), 613-661.
doi: 10.4208/cicp.301110.040811a.![]() ![]() ![]() |
[39] |
J. Kim, K. Kang and J. Lowengrub, Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys., 193 (2004), 511-543.
doi: 10.1016/j.jcp.2003.07.035.![]() ![]() ![]() |
[40] |
A. G. Lamorgese, D. Molin and R. Mauri, Phase field approach to multiphase flow modeling, Milan J. Math., 79 (2011), 597-642.
doi: 10.1007/s00032-011-0171-6.![]() ![]() ![]() |
[41] |
C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179 (2003), 211-228.
doi: 10.1016/S0167-2789(03)00030-7.![]() ![]() ![]() |
[42] |
J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 2617-2654.
doi: 10.1098/rspa.1998.0273.![]() ![]() ![]() |
[43] |
J. C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philos. Trans. R. Soc. London, 170 (1879), 704-712.
![]() |
[44] |
T. Tachim. Medjo, Pullback attracots for a non-autonomous Cahn-Hilliard-Navier-Stokes system in 2D, Asymptot. Anal., 90 (2014), 21-51.
![]() ![]() |
[45] |
H. K. Moffatt, Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18 (1964), 1-18.
![]() ![]() |
[46] |
T. Z. Qian, X. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306.
![]() |
[47] |
T. Z. Qian, X. Wang and P. Sheng, A variational approach to moving contact line hydrodynamics, J. Fluid Mech., 564 (2006), 333-360.
doi: 10.1017/S0022112006001935.![]() ![]() ![]() |
[48] |
R. Ruiz and D. R. Nelson, Turbulence in binary fluid mixtures, Phys. Rev. A: At, Mol. Opt. Phys., 23 (1981), 3224-3246.
![]() |
[49] |
G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1-33.
doi: 10.1007/BF02218613.![]() ![]() ![]() |
[50] |
J. Shen and X. F. Yang, Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chin. Ann. Math. Ser. B, 31 (2010), 743-758.
doi: 10.1007/s11401-010-0599-y.![]() ![]() ![]() |
[51] |
J. Shen, X. F. Yang and H. J. Yu, Efficient energy stable numerical schemes for a phase field moving contact line model, J. Comput. Phys., 284 (2015), 617-630.
doi: 10.1016/j.jcp.2014.12.046.![]() ![]() ![]() |
[52] |
Y. Shi, K. Bao and X. P. Wang, 3D adaptive finite element method for a phase field model for the moving contact line problems, Inverse Probl. Imaging, 7 (2013), 947-959.
doi: 10.3934/ipi.2013.7.947.![]() ![]() ![]() |
[53] |
E. D. Siggia, Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A: At, Mol. Opt. Phys., 20 (1979), 595-605.
![]() |
[54] |
V. N. Starovoitov, On the motion of a two-component fluid in the presence of capillary forces, Math. Notes, 62 (1997), 244-254.
doi: 10.1007/BF02355911.![]() ![]() ![]() |
[55] |
Z. J. Tan, K. M. Lim and B. C. Khoo, An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model, J. Comput. Phys., 225 (2007), 1137-1158.
doi: 10.1016/j.jcp.2007.01.019.![]() ![]() ![]() |
[56] |
X. P. Wang and Y. G. Wang, The sharp interface limit of a phase field model for moving contact line problem, Methods Appl. Anal., 14 (2007), 287-294.
doi: 10.4310/MAA.2007.v14.n3.a6.![]() ![]() ![]() |
[57] |
P. T. Yue, C. F. Zhou and J. J. Feng, Sharp-interface limit of the Cahn-Hilliard model for moving contact lines, J. Fluid Mech., 645 (2010), 279-294.
doi: 10.1017/S0022112009992679.![]() ![]() ![]() |
[58] |
L. Y. Zhao, H. Wu and H. Y. Huang, Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids, Commun. Math. Sci., 7 (2009), 939-962.
![]() ![]() |
[59] |
Y. Zhou and J. S. Fan, The vanishing viscosity limit for a 2D Cahn-Hilliard-Navier-Stokes system with a slip boundary condition, Nonlinear Anal. Real World Appl., 14 (2013), 1130-1134.
doi: 10.1016/j.nonrwa.2012.09.003.![]() ![]() ![]() |