\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation

This author is supported by the ERC Advanced Grant no. 291214, BLOWDISOL

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider a blow-up solution for the complex-valued semilinear wave equation with power non-linearity in one space dimension. We show that the set of non characteristic points $ I_0 $ is open and that the blow-up curve is of class $ C^{1, \mu_0} $ and the phase $ \theta $ is $ C^{\mu_0} $ on this set. In order to prove this result, we introduce a Liouville Theorem for that equation. Our results hold also for the case of solutions with values in $ \mathbb{R}^m $ with $ m\ge 3 $, with the same proof.

    Mathematics Subject Classification: Primary: 35L05, 35B44, 35B53; Secondary: 58J45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and Their Applications, 17. Birkhäuser Boston Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-2578-2.
    [2] S. Alinhac, A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations, In Journées "Équations aux Dérivées Partielles" (Forges-les-Eaux, 2002), pages Exp. No. I, 33. Univ. Nantes, Nantes, 2002.
    [3] C. Antonini and F. Merle, Optimal bounds on positive blow-up solutions for a semilinear wave equation, Internat. Math. Res. Notices, 21 (2001), 1141-1167.  doi: 10.1155/S107379280100054X.
    [4] A. Azaiez, Blow-up profile for the complex-valued semilinear wave equation, Trans. Amer. Math. Soc., 367 (2015), 5891-5933.  doi: 10.1090/S0002-9947-2014-06370-8.
    [5] Blow-up rate for a semilinear wave equation with exponential nonlinearity in one space dimension, Proceedings of the MIMS-CIMPA Research School "Partial Differential Equations arising from Physics and Geometry", 2015.
    [6] A. Azaiez and H. Zaag, A modulation technique for the blow-up profile of the vector-valued semilinear wave equation, Bull. Sci. Math., 141 (2017), 312-352.  doi: 10.1016/j.bulsci.2017.04.001.
    [7] L. A. Caffarelli and A. Friedman, The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), 223-241.  doi: 10.2307/2000465.
    [8] R. Côte and H. Zaag, Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Comm. Pure Appl. Math., 66 (2013), 1541-1581.  doi: 10.1002/cpa.21452.
    [9] J. GinibreA. Soffer and G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., 110 (1992), 96-130.  doi: 10.1016/0022-1236(92)90044-J.
    [10] J. Ginibre and G. Velo, Regularity of solutions of critical and subcritical nonlinear wave equations, Nonlinear Anal., 22 (1994), 1-19.  doi: 10.1016/0362-546X(94)90002-7.
    [11] S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations. Ⅰ, Comm. Partial Differential Equations, 18 (1993), 431-452.  doi: 10.1080/03605309308820936.
    [12] S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations. Ⅱ, Comm. Partial Differential Equations, 18 (1993), 1869-1899.  doi: 10.1080/03605309308820997.
    [13] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au+{\mathcal F}(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.
    [14] H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.  doi: 10.1006/jfan.1995.1075.
    [15] F. Merle and H. Zaag, Determination of the blow-up rate for the semilinear wave equation, Amer. J. Math., 125 (2003), 1147-1164. 
    [16] F. Merle and H. Zaag, On growth rate near the blowup surface for semilinear wave equations, Int. Math. Res. Not., 19 (2005), 1127-1155.  doi: 10.1155/IMRN.2005.1127.
    [17] F. Merle and H. Zaag, Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal., 253 (2007), 43-121.  doi: 10.1016/j.jfa.2007.03.007.
    [18] F. Merle and H. Zaag, Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation, Comm. Math. Phys., 282 (2008), 55-86.  doi: 10.1007/s00220-008-0532-3.
    [19] Points caractéristiques à l'explosion pour une équation semilinéaire des ondes, In "Séminaire X-EDP". École Polytech., Palaiseau, 2010.
    [20] F. Merle and H. Zaag, Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math., 134 (2012), 581-648.  doi: 10.1353/ajm.2012.0021.
    [21] F. Merle and H. Zaag, Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation, Duke Math. J, 161 (2012), 2837-2908.  doi: 10.1215/00127094-1902040.
    [22] F. Merle and H. Zaag, On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333 (20153), 1529-1562.  doi: 10.1007/s00220-014-2132-8.
    [23] F. Merle and H. Zaag, Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions, Trans. Amer. Math. Soc., 368 (2016), 27-87.  doi: 10.1090/tran/6450.
    [24] N. Nouaili, $c^{1,\mu_0}$ regularity of the blow-up curve at non characteristic points for the one dimensional semilinear wave equation, Comm. Partial Differential Equations, 33 (2008), 1540-1548.  doi: 10.1080/03605300802234937.
    [25] J. Shatah and M. Struwe, Geometric Wave Equations, volume 2 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 1998.
  • 加载中
SHARE

Article Metrics

HTML views(703) PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return