-
Previous Article
Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise
- CPAA Home
- This Issue
-
Next Article
Molecular characterization of anisotropic weak Musielak-Orlicz Hardy spaces and their applications
Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation
Université de Cergy-Pontoise, AGM, CNRS (UMR 8088), 95302, Cergy-Pontoise, France |
In this paper, we consider a blow-up solution for the complex-valued semilinear wave equation with power non-linearity in one space dimension. We show that the set of non characteristic points $ I_0 $ is open and that the blow-up curve is of class $ C^{1, \mu_0} $ and the phase $ \theta $ is $ C^{\mu_0} $ on this set. In order to prove this result, we introduce a Liouville Theorem for that equation. Our results hold also for the case of solutions with values in $ \mathbb{R}^m $ with $ m\ge 3 $, with the same proof.
References:
[1] |
S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and Their Applications, 17. Birkhäuser Boston Inc., Boston, MA, 1995.
doi: 10.1007/978-1-4612-2578-2. |
[2] |
S. Alinhac, A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations, In Journées "Équations aux Dérivées Partielles" (Forges-les-Eaux, 2002), pages Exp. No. I, 33. Univ. Nantes, Nantes, 2002. |
[3] |
C. Antonini and F. Merle,
Optimal bounds on positive blow-up solutions for a semilinear wave equation, Internat. Math. Res. Notices, 21 (2001), 1141-1167.
doi: 10.1155/S107379280100054X. |
[4] |
A. Azaiez,
Blow-up profile for the complex-valued semilinear wave equation, Trans. Amer. Math. Soc., 367 (2015), 5891-5933.
doi: 10.1090/S0002-9947-2014-06370-8. |
[5] |
Blow-up rate for a semilinear wave equation with exponential nonlinearity in one space dimension, Proceedings of the MIMS-CIMPA Research School "Partial Differential Equations arising from Physics and Geometry", 2015. |
[6] |
A. Azaiez and H. Zaag,
A modulation technique for the blow-up profile of the vector-valued semilinear wave equation, Bull. Sci. Math., 141 (2017), 312-352.
doi: 10.1016/j.bulsci.2017.04.001. |
[7] |
L. A. Caffarelli and A. Friedman,
The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), 223-241.
doi: 10.2307/2000465. |
[8] |
R. Côte and H. Zaag,
Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Comm. Pure Appl. Math., 66 (2013), 1541-1581.
doi: 10.1002/cpa.21452. |
[9] |
J. Ginibre, A. Soffer and G. Velo,
The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., 110 (1992), 96-130.
doi: 10.1016/0022-1236(92)90044-J. |
[10] |
J. Ginibre and G. Velo,
Regularity of solutions of critical and subcritical nonlinear wave equations, Nonlinear Anal., 22 (1994), 1-19.
doi: 10.1016/0362-546X(94)90002-7. |
[11] |
S. Kichenassamy and W. Littman,
Blow-up surfaces for nonlinear wave equations. Ⅰ, Comm. Partial Differential Equations, 18 (1993), 431-452.
doi: 10.1080/03605309308820936. |
[12] |
S. Kichenassamy and W. Littman,
Blow-up surfaces for nonlinear wave equations. Ⅱ, Comm. Partial Differential Equations, 18 (1993), 1869-1899.
doi: 10.1080/03605309308820997. |
[13] |
H. A. Levine,
Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au+{\mathcal F}(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.
doi: 10.2307/1996814. |
[14] |
H. Lindblad and C. D. Sogge,
On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.
doi: 10.1006/jfan.1995.1075. |
[15] |
F. Merle and H. Zaag,
Determination of the blow-up rate for the semilinear wave equation, Amer. J. Math., 125 (2003), 1147-1164.
|
[16] |
F. Merle and H. Zaag,
On growth rate near the blowup surface for semilinear wave equations, Int. Math. Res. Not., 19 (2005), 1127-1155.
doi: 10.1155/IMRN.2005.1127. |
[17] |
F. Merle and H. Zaag,
Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal., 253 (2007), 43-121.
doi: 10.1016/j.jfa.2007.03.007. |
[18] |
F. Merle and H. Zaag,
Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation, Comm. Math. Phys., 282 (2008), 55-86.
doi: 10.1007/s00220-008-0532-3. |
[19] |
Points caractéristiques à l'explosion pour une équation semilinéaire des ondes, In "Séminaire X-EDP". École Polytech., Palaiseau, 2010. |
[20] |
F. Merle and H. Zaag,
Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math., 134 (2012), 581-648.
doi: 10.1353/ajm.2012.0021. |
[21] |
F. Merle and H. Zaag,
Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation, Duke Math. J, 161 (2012), 2837-2908.
doi: 10.1215/00127094-1902040. |
[22] |
F. Merle and H. Zaag,
On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333 (20153), 1529-1562.
doi: 10.1007/s00220-014-2132-8. |
[23] |
F. Merle and H. Zaag,
Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions, Trans. Amer. Math. Soc., 368 (2016), 27-87.
doi: 10.1090/tran/6450. |
[24] |
N. Nouaili,
$c^{1,\mu_0}$ regularity of the blow-up curve at non characteristic points for the one dimensional semilinear wave equation, Comm. Partial Differential Equations, 33 (2008), 1540-1548.
doi: 10.1080/03605300802234937. |
[25] |
J. Shatah and M. Struwe, Geometric Wave Equations, volume 2 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 1998. |
show all references
References:
[1] |
S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and Their Applications, 17. Birkhäuser Boston Inc., Boston, MA, 1995.
doi: 10.1007/978-1-4612-2578-2. |
[2] |
S. Alinhac, A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations, In Journées "Équations aux Dérivées Partielles" (Forges-les-Eaux, 2002), pages Exp. No. I, 33. Univ. Nantes, Nantes, 2002. |
[3] |
C. Antonini and F. Merle,
Optimal bounds on positive blow-up solutions for a semilinear wave equation, Internat. Math. Res. Notices, 21 (2001), 1141-1167.
doi: 10.1155/S107379280100054X. |
[4] |
A. Azaiez,
Blow-up profile for the complex-valued semilinear wave equation, Trans. Amer. Math. Soc., 367 (2015), 5891-5933.
doi: 10.1090/S0002-9947-2014-06370-8. |
[5] |
Blow-up rate for a semilinear wave equation with exponential nonlinearity in one space dimension, Proceedings of the MIMS-CIMPA Research School "Partial Differential Equations arising from Physics and Geometry", 2015. |
[6] |
A. Azaiez and H. Zaag,
A modulation technique for the blow-up profile of the vector-valued semilinear wave equation, Bull. Sci. Math., 141 (2017), 312-352.
doi: 10.1016/j.bulsci.2017.04.001. |
[7] |
L. A. Caffarelli and A. Friedman,
The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), 223-241.
doi: 10.2307/2000465. |
[8] |
R. Côte and H. Zaag,
Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Comm. Pure Appl. Math., 66 (2013), 1541-1581.
doi: 10.1002/cpa.21452. |
[9] |
J. Ginibre, A. Soffer and G. Velo,
The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., 110 (1992), 96-130.
doi: 10.1016/0022-1236(92)90044-J. |
[10] |
J. Ginibre and G. Velo,
Regularity of solutions of critical and subcritical nonlinear wave equations, Nonlinear Anal., 22 (1994), 1-19.
doi: 10.1016/0362-546X(94)90002-7. |
[11] |
S. Kichenassamy and W. Littman,
Blow-up surfaces for nonlinear wave equations. Ⅰ, Comm. Partial Differential Equations, 18 (1993), 431-452.
doi: 10.1080/03605309308820936. |
[12] |
S. Kichenassamy and W. Littman,
Blow-up surfaces for nonlinear wave equations. Ⅱ, Comm. Partial Differential Equations, 18 (1993), 1869-1899.
doi: 10.1080/03605309308820997. |
[13] |
H. A. Levine,
Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au+{\mathcal F}(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.
doi: 10.2307/1996814. |
[14] |
H. Lindblad and C. D. Sogge,
On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.
doi: 10.1006/jfan.1995.1075. |
[15] |
F. Merle and H. Zaag,
Determination of the blow-up rate for the semilinear wave equation, Amer. J. Math., 125 (2003), 1147-1164.
|
[16] |
F. Merle and H. Zaag,
On growth rate near the blowup surface for semilinear wave equations, Int. Math. Res. Not., 19 (2005), 1127-1155.
doi: 10.1155/IMRN.2005.1127. |
[17] |
F. Merle and H. Zaag,
Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal., 253 (2007), 43-121.
doi: 10.1016/j.jfa.2007.03.007. |
[18] |
F. Merle and H. Zaag,
Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation, Comm. Math. Phys., 282 (2008), 55-86.
doi: 10.1007/s00220-008-0532-3. |
[19] |
Points caractéristiques à l'explosion pour une équation semilinéaire des ondes, In "Séminaire X-EDP". École Polytech., Palaiseau, 2010. |
[20] |
F. Merle and H. Zaag,
Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math., 134 (2012), 581-648.
doi: 10.1353/ajm.2012.0021. |
[21] |
F. Merle and H. Zaag,
Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation, Duke Math. J, 161 (2012), 2837-2908.
doi: 10.1215/00127094-1902040. |
[22] |
F. Merle and H. Zaag,
On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333 (20153), 1529-1562.
doi: 10.1007/s00220-014-2132-8. |
[23] |
F. Merle and H. Zaag,
Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions, Trans. Amer. Math. Soc., 368 (2016), 27-87.
doi: 10.1090/tran/6450. |
[24] |
N. Nouaili,
$c^{1,\mu_0}$ regularity of the blow-up curve at non characteristic points for the one dimensional semilinear wave equation, Comm. Partial Differential Equations, 33 (2008), 1540-1548.
doi: 10.1080/03605300802234937. |
[25] |
J. Shatah and M. Struwe, Geometric Wave Equations, volume 2 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 1998. |
[1] |
Mohammad Safdari. The regularity of some vector-valued variational inequalities with gradient constraints. Communications on Pure and Applied Analysis, 2018, 17 (2) : 413-428. doi: 10.3934/cpaa.2018023 |
[2] |
Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011 |
[3] |
Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487 |
[4] |
Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1529-1541. doi: 10.3934/dcdss.2020086 |
[5] |
Michele Campiti. Korovkin-type approximation of set-valued and vector-valued functions. Mathematical Foundations of Computing, 2022, 5 (3) : 231-239. doi: 10.3934/mfc.2021032 |
[6] |
Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial and Management Optimization, 2020, 16 (2) : 707-724. doi: 10.3934/jimo.2018174 |
[7] |
Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On well-posedness of vector-valued fractional differential-difference equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2679-2708. doi: 10.3934/dcds.2019112 |
[8] |
Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure and Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313 |
[9] |
Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098 |
[10] |
Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591 |
[11] |
Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure and Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955 |
[12] |
Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549 |
[13] |
Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure and Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565 |
[14] |
Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365 |
[15] |
Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 |
[16] |
Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947 |
[17] |
Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865 |
[18] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016 |
[19] |
Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050 |
[20] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]