In this paper, we study the asymptotic stability of traveling wave fronts to the Allen-Cahn equation with a fractional Laplacian. The main tools that we used are super- and subsolutions and squeezing methods.
Citation: |
[1] |
X. Cabré, N. Cónsul and J. Mandé, Traveling wave solutions in a half-space for boundary reactions, Anal. PDE, 8 (2015), 333-364.
doi: 10.2140/apde.2015.8.333.![]() ![]() ![]() |
[2] |
X. Cabré and J-M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Comm. Math. Phys., 320 (2013), 679-722.
doi: 10.1007/s00220-013-1682-5.![]() ![]() ![]() |
[3] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré, 31 (2014), 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
[4] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), 911-941.
doi: 10.1090/S0002-9947-2014-05906-0.![]() ![]() ![]() |
[5] |
L. Caffarelli, A. Mellet and Y. Sire, Traveling waves for a boundary reaction-diffusion equation, Adv. Math., 230 (2012), 433-457.
doi: 10.1016/j.aim.2012.01.020.![]() ![]() ![]() |
[6] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[7] |
H. Chan and J. Wei, Traveling wave solutions for bistable fractional Allen-Cahn equations with a pyramidal front, J. Differential Equations, 262 (2017), 4567-4609.
doi: 10.1016/j.jde.2016.12.010.![]() ![]() ![]() |
[8] |
X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
![]() ![]() |
[9] |
P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.
doi: 10.1007/BF00250432.![]() ![]() ![]() |
[10] |
C. Gui and T. Huan, Traveling wave solutions to some reaction diffusion equations with fractional Laplacians, Calc. Var. Partial Differential Equations, 54 (2015), 251-273.
doi: 10.1007/s00526-014-0785-y.![]() ![]() ![]() |
[11] |
C. Gui and M. Zhao, Traveling wave solutions of Allen-Cahn equation with a fractional Laplacian, Ann. Inst. H. Poincaré, 32 (2015), 785-812.
doi: 10.1016/j.anihpc.2014.03.005.![]() ![]() ![]() |
[12] |
N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, 1972.
doi: 978-3-642-65185-4.![]() ![]() ![]() |
[13] |
R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.1090/S0002-9947-1990-0967316-X.![]() ![]() ![]() |
[14] |
H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Comm. Partial Differential Equations, 34 (2009), 976-1002.
doi: 10.1080/03605300902963500.![]() ![]() ![]() |
[15] |
A. Mellet, J-M. Roquejoffre and Y. Sire, Existence and asymptotics of fronts in non local combustion models, Commun. Math. Sci., 12 (2014), 1-11.
doi: 10.4310/CMS.2014.v12.n1.a1.![]() ![]() ![]() |
[16] |
C. B. Muratov, F. Posta and S. Y. Shvartsman, Autocrine signal transmission with extracellular ligand degradation, Phys. Biol., 6 (2009).
doi: 10.1088/1478-3975/6/1/016006.![]() ![]() |
[17] |
Y. Necb, A. A. Nepomnyashchy and V. A. Volpert, Exact solutions in front propagation problems with superdiffusion, Physica D, 239 (2010), 134-144.
doi: 10.1016/j.physd.2009.10.011.![]() ![]() ![]() |
[18] |
H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233.
doi: 10.1016/j.jde.2004.06.011.![]() ![]() ![]() |
[19] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. New York: Springer-Verlag, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
[20] |
H. L. Smith and X. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.
doi: 10.1137/S0036141098346785.![]() ![]() ![]() |
[21] |
M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.
doi: 10.1137/060661788.![]() ![]() ![]() |
[22] |
M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.
doi: 10.1016/j.jde.2008.06.037.![]() ![]() ![]() |
[23] |
Z.-C. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200.
doi: 10.1016/j.jde.2007.03.025.![]() ![]() ![]() |
[24] |
Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction of Reaction-Diffusion Equations, Science Press, Beijing, 2011.
![]() |