-
Previous Article
Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation
- CPAA Home
- This Issue
-
Next Article
Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian
A note on global existence for the Zakharov system on $ \mathbb{T} $
Massachusetts Institute of Technology, 182 Memorial Drive, Cambridge, MA 02139, USA |
We show that the one-dimensional periodic Zakharov system is globally well-posed in a class of low-regularity Fourier-Lebesgue spaces. The result is obtained by combining the I-method with Bourgain's high-low decomposition method. As a corollary, we obtain probabilistic global existence results in $ L^2 $-based Sobolev spaces. We also obtain global well-posedness in $ H^{\frac12+} \times L^2 $, which is sharp (up to endpoints) in the class of $ L^2 $-based Sobolev spaces.
References:
[1] |
I. Bejenaru, S. Herr, J. Holmer and D. Tataru,
On the 2d Zakharov system with $L^2$ Schrödinger data, Nonlinearity, 22 (2009), 1063-1089.
doi: 10.1088/0951-7715/22/5/007. |
[2] |
J. Bourgain,
On the Cauchy and invariant measure problem for the periodic Zakharov system, Duke Math. J., 76 (1994), 175-202.
doi: 10.1215/S0012-7094-94-07607-2. |
[3] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.
doi: 10.1007/BF01896020. |
[4] |
J. Bourgain,
Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994), 1-26.
|
[5] |
J. Bourgain, Refinement of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Internat. Math. Res. Not., (1998), 253–283.
doi: 10.1155/S1073792898000191. |
[6] |
J. Bourgain,
A remark on normal forms and the "I-method" for periodic NLS, J. Anal. Math., 94 (2004), 125-157.
doi: 10.1007/BF02789044. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Diff. Eq., 2001 (2001), 1-7.
|
[8] |
J. Colliander and T. Oh,
Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(T)$, Duke Math. J., 161 (2012), 367-414.
doi: 10.1215/00127094-1507400. |
[9] |
J. Ginibre, Y. Tsutsumi and G. Velo,
On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[10] |
N. Kishimoto,
Local well-posedness for the Zakharov system on the multidimensional torus, J. Anal. Math., 119 (2013), 213-253.
doi: 10.1007/s11854-013-0007-0. |
[11] |
N. Kishimoto,
Resonant decomposition and the I-method for the two-dimensional Zakharov system, Discrete Contin. Dyn. Syst., 33 (2013), 4095-4122.
doi: 10.3934/dcds.2013.33.4095. |
[12] |
J. Lebowitz, H. Rose and E. Speer,
Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys., 50 (1988), 657-687.
doi: 10.1007/BF01026495. |
[13] |
T. Ozawa,
Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.
doi: 10.1007/s00526-005-0349-2. |
[14] |
H. Takaoka,
Well-posedness for the Zakharov system with the periodic boundary condition, Differential Integral Equations, 12 (1999), 789-810.
|
[15] |
V. E. Zakharov,
Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914.
|
show all references
References:
[1] |
I. Bejenaru, S. Herr, J. Holmer and D. Tataru,
On the 2d Zakharov system with $L^2$ Schrödinger data, Nonlinearity, 22 (2009), 1063-1089.
doi: 10.1088/0951-7715/22/5/007. |
[2] |
J. Bourgain,
On the Cauchy and invariant measure problem for the periodic Zakharov system, Duke Math. J., 76 (1994), 175-202.
doi: 10.1215/S0012-7094-94-07607-2. |
[3] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.
doi: 10.1007/BF01896020. |
[4] |
J. Bourgain,
Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994), 1-26.
|
[5] |
J. Bourgain, Refinement of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Internat. Math. Res. Not., (1998), 253–283.
doi: 10.1155/S1073792898000191. |
[6] |
J. Bourgain,
A remark on normal forms and the "I-method" for periodic NLS, J. Anal. Math., 94 (2004), 125-157.
doi: 10.1007/BF02789044. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Diff. Eq., 2001 (2001), 1-7.
|
[8] |
J. Colliander and T. Oh,
Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(T)$, Duke Math. J., 161 (2012), 367-414.
doi: 10.1215/00127094-1507400. |
[9] |
J. Ginibre, Y. Tsutsumi and G. Velo,
On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[10] |
N. Kishimoto,
Local well-posedness for the Zakharov system on the multidimensional torus, J. Anal. Math., 119 (2013), 213-253.
doi: 10.1007/s11854-013-0007-0. |
[11] |
N. Kishimoto,
Resonant decomposition and the I-method for the two-dimensional Zakharov system, Discrete Contin. Dyn. Syst., 33 (2013), 4095-4122.
doi: 10.3934/dcds.2013.33.4095. |
[12] |
J. Lebowitz, H. Rose and E. Speer,
Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys., 50 (1988), 657-687.
doi: 10.1007/BF01026495. |
[13] |
T. Ozawa,
Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.
doi: 10.1007/s00526-005-0349-2. |
[14] |
H. Takaoka,
Well-posedness for the Zakharov system with the periodic boundary condition, Differential Integral Equations, 12 (1999), 789-810.
|
[15] |
V. E. Zakharov,
Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914.
|
[1] |
Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259 |
[2] |
Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811 |
[3] |
Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126 |
[4] |
Akansha Sanwal. Local well-posedness for the Zakharov system in dimension d ≤ 3. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1067-1103. doi: 10.3934/dcds.2021147 |
[5] |
Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 |
[6] |
Xujie Yang. Global well-posedness in a chemotaxis system with oxygen consumption. Communications on Pure and Applied Analysis, 2022, 21 (2) : 471-492. doi: 10.3934/cpaa.2021184 |
[7] |
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems and Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307 |
[8] |
Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1 |
[9] |
Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075 |
[10] |
Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019 |
[11] |
Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087 |
[12] |
Hartmut Pecher. Local well-posedness for the Klein-Gordon-Zakharov system in 3D. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1707-1736. doi: 10.3934/dcds.2020338 |
[13] |
Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061 |
[14] |
Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036 |
[15] |
Zijun Chen, Shengkun Wu. Local well-posedness for the Zakharov system in dimension $ d = 2, 3 $. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4307-4319. doi: 10.3934/cpaa.2021161 |
[16] |
E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156 |
[17] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[18] |
Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903 |
[19] |
Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure and Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261 |
[20] |
Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure and Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]