American Institute of Mathematical Sciences

• Previous Article
Global existence and asymptotic behavior of spherically symmetric solutions for the multi-dimensional infrarelativistic model
• CPAA Home
• This Issue
• Next Article
Large deviations for stochastic 3D Leray-$\alpha$ model with fractional dissipation
September  2019, 18(5): 2511-2528. doi: 10.3934/cpaa.2019114

Effects of dispersal for a predator-prey model in a heterogeneous environment

 1 School of Science, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China 2 School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi 710071, China 3 College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China

Received  June 2018 Revised  November 2018 Published  April 2019

Fund Project: The work is supported by the Natural Science Foundation of China (11801431, 61672021), the Postdoctoral Science Foundation of China (2018T111014, 2018M631133), the Natural Science Foundation of Shaanxi Province (2018JQ1004, 2018JQ1017), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 18JK0343).

In this paper, we study the stationary problem of a predator-prey cross-diffusion system with a protection zone for the prey. We first apply the bifurcation theory to establish the existence of positive stationary solutions. Furthermore, as the cross-diffusion coefficient goes to infinity, the limiting behavior of positive stationary solutions is discussed. These results implies that the large cross-diffusion has beneficial effects on the coexistence of two species. Finally, we analyze the limiting behavior of positive stationary solutions as the intrinsic growth rate of the predator species goes to infinity.

Citation: Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114
References:
 [1] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2. [2] R. H. Cui, J. P. Shi and B. Y. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Differential Equations, 256 (2014), 108-129.  doi: 10.1016/j.jde.2013.08.015. [3] Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013. [4] Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557–4593. [5] Y. H. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.  doi: 10.1016/j.jde.2007.10.005. [6] Y. H. Du, R. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007. [7] X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, J. Math. Biol., 75 (2017), 239-257.  doi: 10.1007/s00285-016-1082-5. [8] S. B. Li, S. Y. Liu, J. H. Wu and Y. Y. Dong, Positive solutions for Lotka-Volterra competition system with large cross-diffusion in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 36 (2017), 1-19.  doi: 10.1016/j.nonrwa.2016.12.004. [9] S. B. Li and J. H. Wu, Effect of cross-diffusion in the diffusion prey-predator model with a protection zone, Discrete Contin. Dynam. Syst., 37 (2017), 411-430.  doi: 10.3934/dcds.2017063. [10] S. B. Li, J. H. Wu and S. Y. Liu, Effect of cross-diffusion on the stationary problem of a Leslie prey-predator model with a protection zone, Calc. Var. Partial Differential Equations, (2017), 56–82. doi: 10.1007/s00526-017-1159-z. [11] S. B. Li and Y. Yamada, Effect of cross-diffusion in the diffusion prey-predator model with a protection zone Ⅱ, J. Math. Anal. Appl., 461 (2018), 971-992.  doi: 10.1016/j.jmaa.2017.12.029. [12] S. B. Li and J. H. Wu, Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator-prey system, J. Differential Equations, 265 (2018), 3754-3791.  doi: 10.1016/j.jde.2018.05.017. [13] S. B. Li, J. H. Wu and Y. Y. Dong, Effects of a degeneracy in a diffusive predator-prey model with Holling Ⅱ functional response, Nonlinear Anal. Real World Appl., 43 (2018), 78-95.  doi: 10.1016/j.nonrwa.2018.02.003. [14] S. B. Li, J. H. Wu and Y. Y. Dong, Effects of degeneracy and response function in a diffusion predator-prey model, Nonlinearity, 31 (2018), 1461-1483.  doi: 10.1088/1361-6544/aaa2de. [15] G. M. Lieberman, Bounds for the steady-state Sel'kov model for arbitrary p in any number of dimensions, SIAM J. Math. Anal., 36 (2005), 1400–1406. [16] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics, vol. 426, CRC Press, Boca Raton, FL, 2001. [17] K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.  doi: 10.1016/j.jde.2011.01.026. [18] K. Oeda, Coexistence states of a prey-predator model with cross-diffusion and a protection zone, Adv. Math. Sci. Appl., 22 (2012), 501-520. [19] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem, J. Funct. Anal., 7 (1971) 487–513. [20] Y. X. Wang and W. T. Li, Effects of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.  doi: 10.1016/j.nonrwa.2012.06.001. [21] Y. X. Wang and W. T. Li, Uniqueness and global stability of positive stationary solution for a predator-prey system, J. Math. Anal. Appl., 462 (2018), 577-589.  doi: 10.1016/j.jmaa.2018.02.032. [22] Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations (in Chinese), Beijing: Science Press, 1990. [23] X. Z. Zeng, W. T. Zeng and L. Y. Liu, Effect of the protection zone on coexistence of the species for a ratio-dependent predator-prey model, J. Math. Anal. Appl., 462 (2018), 1605-1626.  doi: 10.1016/j.jmaa.2018.02.060.

show all references

References:
 [1] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2. [2] R. H. Cui, J. P. Shi and B. Y. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Differential Equations, 256 (2014), 108-129.  doi: 10.1016/j.jde.2013.08.015. [3] Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013. [4] Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557–4593. [5] Y. H. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.  doi: 10.1016/j.jde.2007.10.005. [6] Y. H. Du, R. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007. [7] X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, J. Math. Biol., 75 (2017), 239-257.  doi: 10.1007/s00285-016-1082-5. [8] S. B. Li, S. Y. Liu, J. H. Wu and Y. Y. Dong, Positive solutions for Lotka-Volterra competition system with large cross-diffusion in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 36 (2017), 1-19.  doi: 10.1016/j.nonrwa.2016.12.004. [9] S. B. Li and J. H. Wu, Effect of cross-diffusion in the diffusion prey-predator model with a protection zone, Discrete Contin. Dynam. Syst., 37 (2017), 411-430.  doi: 10.3934/dcds.2017063. [10] S. B. Li, J. H. Wu and S. Y. Liu, Effect of cross-diffusion on the stationary problem of a Leslie prey-predator model with a protection zone, Calc. Var. Partial Differential Equations, (2017), 56–82. doi: 10.1007/s00526-017-1159-z. [11] S. B. Li and Y. Yamada, Effect of cross-diffusion in the diffusion prey-predator model with a protection zone Ⅱ, J. Math. Anal. Appl., 461 (2018), 971-992.  doi: 10.1016/j.jmaa.2017.12.029. [12] S. B. Li and J. H. Wu, Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator-prey system, J. Differential Equations, 265 (2018), 3754-3791.  doi: 10.1016/j.jde.2018.05.017. [13] S. B. Li, J. H. Wu and Y. Y. Dong, Effects of a degeneracy in a diffusive predator-prey model with Holling Ⅱ functional response, Nonlinear Anal. Real World Appl., 43 (2018), 78-95.  doi: 10.1016/j.nonrwa.2018.02.003. [14] S. B. Li, J. H. Wu and Y. Y. Dong, Effects of degeneracy and response function in a diffusion predator-prey model, Nonlinearity, 31 (2018), 1461-1483.  doi: 10.1088/1361-6544/aaa2de. [15] G. M. Lieberman, Bounds for the steady-state Sel'kov model for arbitrary p in any number of dimensions, SIAM J. Math. Anal., 36 (2005), 1400–1406. [16] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics, vol. 426, CRC Press, Boca Raton, FL, 2001. [17] K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.  doi: 10.1016/j.jde.2011.01.026. [18] K. Oeda, Coexistence states of a prey-predator model with cross-diffusion and a protection zone, Adv. Math. Sci. Appl., 22 (2012), 501-520. [19] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem, J. Funct. Anal., 7 (1971) 487–513. [20] Y. X. Wang and W. T. Li, Effects of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.  doi: 10.1016/j.nonrwa.2012.06.001. [21] Y. X. Wang and W. T. Li, Uniqueness and global stability of positive stationary solution for a predator-prey system, J. Math. Anal. Appl., 462 (2018), 577-589.  doi: 10.1016/j.jmaa.2018.02.032. [22] Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations (in Chinese), Beijing: Science Press, 1990. [23] X. Z. Zeng, W. T. Zeng and L. Y. Liu, Effect of the protection zone on coexistence of the species for a ratio-dependent predator-prey model, J. Math. Anal. Appl., 462 (2018), 1605-1626.  doi: 10.1016/j.jmaa.2018.02.060.
 [1] Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063 [2] Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597 [3] Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 [4] Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117 [5] Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536 [6] Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3913-3931. doi: 10.3934/dcdsb.2021211 [7] Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189 [8] Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 [9] Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035 [10] Daniel Ryan, Robert Stephen Cantrell. Avoidance behavior in intraguild predation communities: A cross-diffusion model. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1641-1663. doi: 10.3934/dcds.2015.35.1641 [11] Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161 [12] Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang. Positive steady states of a density-dependent predator-prey model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3087-3107. doi: 10.3934/dcdsb.2017209 [13] Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299 [14] Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177 [15] Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435 [16] F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239 [17] Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026 [18] Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073 [19] Gaetana Gambino, Valeria Giunta, Maria Carmela Lombardo, Gianfranco Rubino. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022063 [20] Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

2021 Impact Factor: 1.273