\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$ L^{p, q} $ estimates on the transport density

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we show a new regularity result on the transport density $ \sigma $ in the classical Monge-Kantorovich optimal mass transport problem between two measures, $ \mu $ and $ \nu $, having some summable densities, $ f^+ $ and $ f^- $. More precisely, we prove that the transport density $ \sigma $ belongs to $ L^{p,q}(\Omega) $ as soon as $ f^+,\,f^- \in L^{p,q}(\Omega) $.

    Mathematics Subject Classification: 35B65, 46N10, 49N60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics (1812), Springer, New York, 2003, 1–52. doi: 10.1007/978-3-540-39189-0_1.
    [2] M. Beckmann, A continuous model of transportation, Econometrica, 20 (1952), 643-660.  doi: 10.2307/1907646.
    [3] R. E. Castillo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer International Publishing, 2016. doi: 10.1007/978-3-319-30034-4.
    [4] L. De PascaleL. C. Evans and A. Pratelli, Integral estimates for transport densities, Bull. of the London Math. Soc., 36 (2004), 383-395.  doi: 10.1112/S0024609303003035.
    [5] L. De Pascale and A. Pratelli, Sharp summability for Monge transport density via interpolation, ESAIM Control Optim. Calc. Var., 10 (2004), 549-552.  doi: 10.1051/cocv:2004019.
    [6] L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), no. 653. doi: 10.1090/memo/0653.
    [7] M. Feldman and R. McCann, Uniqueness and transport density in Monge's mass transportation problem, Calc. Var. Par. Diff. Eq., 15 (2002), 81-113.  doi: 10.1007/s005260100119.
    [8] L. Kantorovich, On the transfer of masses, Dokl. Acad. Nauk. USSR, 37 (1942), 7-8. 
    [9] G. Monge, Mémoire sur la théorie des déblais et des remblais, Histoire de l'Académie Royale des Sciences de Paris, (1781), 666-704. 
    [10] F. Santambrogio, Absolute continuity and summability of transport densities: simpler proofs and new estimates, Calc. Var. Par. Diff. Eq., 36 (2009), 343-354.  doi: 10.1007/s00526-009-0231-8.
    [11] F. Santambrogio, Optimal Transport for Applied Mathematicians, in Progress in Nonlinear Differential Equations and Their Applications, 87, Birkhäuser Basel (2015). doi: 10.1007/978-3-319-20828-2.
    [12] C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, Vol. 58, 2003. doi: 10.1007/b12016.
  • 加载中
SHARE

Article Metrics

HTML views(400) PDF downloads(212) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return