In this paper, we show a new regularity result on the transport density $ \sigma $ in the classical Monge-Kantorovich optimal mass transport problem between two measures, $ \mu $ and $ \nu $, having some summable densities, $ f^+ $ and $ f^- $. More precisely, we prove that the transport density $ \sigma $ belongs to $ L^{p,q}(\Omega) $ as soon as $ f^+,\,f^- \in L^{p,q}(\Omega) $.
Citation: |
[1] |
L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics (1812), Springer, New York, 2003, 1–52.
doi: 10.1007/978-3-540-39189-0_1.![]() ![]() ![]() |
[2] |
M. Beckmann, A continuous model of transportation, Econometrica, 20 (1952), 643-660.
doi: 10.2307/1907646.![]() ![]() ![]() |
[3] |
R. E. Castillo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-30034-4.![]() ![]() ![]() |
[4] |
L. De Pascale, L. C. Evans and A. Pratelli, Integral estimates for transport densities, Bull. of the London Math. Soc., 36 (2004), 383-395.
doi: 10.1112/S0024609303003035.![]() ![]() ![]() |
[5] |
L. De Pascale and A. Pratelli, Sharp summability for Monge transport density via interpolation, ESAIM Control Optim. Calc. Var., 10 (2004), 549-552.
doi: 10.1051/cocv:2004019.![]() ![]() ![]() |
[6] |
L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), no. 653.
doi: 10.1090/memo/0653.![]() ![]() ![]() |
[7] |
M. Feldman and R. McCann, Uniqueness and transport density in Monge's mass transportation problem, Calc. Var. Par. Diff. Eq., 15 (2002), 81-113.
doi: 10.1007/s005260100119.![]() ![]() ![]() |
[8] |
L. Kantorovich, On the transfer of masses, Dokl. Acad. Nauk. USSR, 37 (1942), 7-8.
![]() ![]() |
[9] |
G. Monge, Mémoire sur la théorie des déblais et des remblais, Histoire de l'Académie Royale des Sciences de Paris, (1781), 666-704.
![]() |
[10] |
F. Santambrogio, Absolute continuity and summability of transport densities: simpler proofs and new estimates, Calc. Var. Par. Diff. Eq., 36 (2009), 343-354.
doi: 10.1007/s00526-009-0231-8.![]() ![]() ![]() |
[11] |
F. Santambrogio, Optimal Transport for Applied Mathematicians, in Progress in Nonlinear Differential Equations and Their Applications, 87, Birkhäuser Basel (2015).
doi: 10.1007/978-3-319-20828-2.![]() ![]() ![]() |
[12] |
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, Vol. 58, 2003.
doi: 10.1007/b12016.![]() ![]() ![]() |