This work is concerned with the invariant measure of a stochastic fractional Burgers equation with degenerate noise on one dimensional bounded domain. Due to the disturbance and influence of the fractional Laplacian operator on a bounded interval interacting with the degenerate noise, the study of the system becomes more complicated. In order to get over the difficulties caused by the fractional Laplacian operator, the usual Hilbert space does not fit the system, we introduce an appropriate weighted space to study it. Meanwhile, we apply the asymptotically strong Feller property instead of the usually strong Feller property to overcome the trouble caused by the degenerate noise, the corresponding Malliavin operator is not invertible. We finally derive the uniqueness of the invariant measure which further implies the ergodicity of the stochastic system.
Citation: |
[1] |
J. M. Burgers, The Nonlinear Diffusion Equation, 1st edition, Springer Science Business Media, Dordrecht, 1974.
![]() |
[2] |
Z. Brzezniak, L. Debbi and B. Goldys, Ergodic properties of fractional stochastic Burgers equation, Glob. Stoch. Anal., 1 (2011), 149-174.
![]() |
[3] |
L. Bertini, N. Cancrini and G. Lasinio, The stochastic Burgers equation, Commun. Math. Phys., 165 (1994), 211-232.
![]() ![]() |
[4] |
J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math., 9 (1951), 225-236.
doi: 10.1090/qam/42889.![]() ![]() ![]() |
[5] |
P. Constantin and C. Poias, Navier-Stokes Equations, edition, University of Chicago press, Chicago, 1988.
![]() ![]() |
[6] |
G. Da Prato, A. Debussche and R. Temam, Stochastic Burgers equation, NODEA-Nonlinear Diff., 1 (1994), 389-402.
doi: 10.1007/BF01194987.![]() ![]() ![]() |
[7] |
G. Da Parto and J. Zabcyzk, Ergodicity for Infinite Dimensional Systems, 1st edition, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() ![]() |
[8] |
Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.
doi: 10.1137/110833294.![]() ![]() ![]() |
[9] |
Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23 (2013), 493-540.
doi: 10.1142/S0218202512500546.![]() ![]() ![]() |
[10] |
W. N. E, J. C. Mattingly and Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Commun. Math. Phys., 224 (2001), 83-106.
doi: 10.1007/s002201224083.![]() ![]() ![]() |
[11] |
W. N. E, K. Khanin, A. Mazel and Y. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. Math., 151 (2000), 877-960.
doi: 10.2307/121126.![]() ![]() ![]() |
[12] |
B. Goldys and B. Maslowskib, Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations, J. Funct. Anal., 226 (2005), 230-255.
doi: 10.1016/j.jfa.2004.12.009.![]() ![]() ![]() |
[13] |
M. Gourcy, Large deviation principle of occupation measure for stochastic Burgers equation, Ann. I. H. Poincaré-PR, 43 (2007), 441-459.
doi: 10.1016/j.anihpb.2006.07.003.![]() ![]() ![]() |
[14] |
M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164 (2006), 993-1032.
doi: 10.4007/annals.2006.164.993.![]() ![]() ![]() |
[15] |
M. Hairer and J. C. Mattingly, Spectral gaps in Wasserstein distance and the 2D stochastic Navier-Stokes equations, Ann. Probab., 36 (2008), 2050-2091.
doi: 10.1214/08-AOP392.![]() ![]() ![]() |
[16] |
H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized Boson equations, in Harmonic Analysis and Nonlinear Partial Differential Equations, Res. Inst. Math. Sci., 5 (2011), 159-175.
![]() ![]() |
[17] |
E. Hopf, The partial differential equation $ u_t + uu_x = \mu u_xx $, Commun. Pure Appl. Math., 3 (1950), 201-230.
doi: 10.1002/cpa.3160030302.![]() ![]() ![]() |
[18] |
M. Kwa$\acute{s}$nicki, Eigenvalues of fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402.
doi: 10.1016/j.jfa.2011.12.004.![]() ![]() ![]() |
[19] |
G. Lv and J. Duan, Martingale and weak solutions for a stochastic nonlocal Burgers equation on finite intervals, J. Math. Anal. Appl., 449 (2017), 176-194.
doi: 10.1016/j.jmaa.2016.12.011.![]() ![]() ![]() |
[20] |
J. C. Mattingly, The dissipative scale of the stochastics Navier-Stokes equation: regularization analyticity, J. Statist. Phys., 108 (2002), 1157-1179.
doi: 10.1023/A:1019799700126.![]() ![]() ![]() |
[21] |
E. D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[22] |
B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 6th edition, Springer-Verlag, Berlin Heidelberg, 2003.
doi: 10.1007/978-3-642-14394-6.![]() ![]() ![]() |