November  2019, 18(6): 3137-3160. doi: 10.3934/cpaa.2019141

Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients

1. 

School of Mathematics and Statistics, Shandong Normal University, Jinan, Shandong, 250358, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China

* Corresponding author

Received  November 2018 Revised  November 2018 Published  May 2019

Fund Project: The second author is supported by the National Natural Science Foundation of China Grant 11671414.

In this paper we study subquadratic elliptic systems in divergence form with VMO leading coefficients in $ \mathbb{R}^{n} $. We establish pointwise estimates for gradients of local weak solutions to the system by involving the sharp maximal operator. As a consequence, the nonlinear Calderón-Zygmund gradient estimates for $ L^{q} $ and BMO norms are derived.

Citation: Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3137-3160. doi: 10.3934/cpaa.2019141
References:
[1]

L. Beck, Boundary Regularity Results for Local Weak Solutions of Subquadratic Elliptic Systems, Ph.D thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2008.

[2]

D. BreitA. CianchiL. DieningT. Kuusi and S. Schwarzacher, Pointwise Calderón-Zygmund gradient estimates for the $p$-Laplace system, Journal de Mathématiques Pures et Appliquées, 114 (2018), 146-190.  doi: 10.1016/j.matpur.2017.07.011.

[3]

D. BreitA. CianchiL. DieningT. Kuusi and S. Schwarzacher, The $p$-Laplace system with right-hand side in divergence form: Inner and up to the boundary pointwise estimates, Nonlinear Analysis: Theory, Methods and Applications, 153 (2017), 200-212.  doi: 10.1016/j.na.2016.06.011.

[4]

L. Caffarelli and I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Communications on Pure and Applied Mathematics, 51 (1998), 1-21.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G.

[5]

A. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Mathematica, 88 (1952), 85-139.  doi: 10.1007/BF02392130.

[6]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, American Journal of Mathematics, 115 (1993), 1107-1134.  doi: 10.2307/2375066.

[7]

L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Mathematicum, 20 (2008), 523-556.  doi: 10.1515/FORUM.2008.027.

[8]

L. DieningP. Kaplický and S. Schwarzacher, BMO estimates for the $p$-Laplacian, Nonlinear Analysis, 75 (2012), 637-650.  doi: 10.1016/j.na.2011.08.065.

[9]

L. DieningB. Stroffolini and A. Verde, Everywhere regularity of functionals with $\varphi$-growth, Manuscripta Mathematica, 129 (2009), 449-481.  doi: 10.1007/s00229-009-0277-0.

[10]

F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials, American Journal of Mathematics, 133 (2011), 1093-1149.  doi: 10.1353/ajm.2011.0023.

[11]

M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 2nd edition, Scuola Normale Superiore di Pisa, 2012. doi: 10.1007/978-88-7642-443-4.

[12]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2003. doi: 10.1142/5002.

[13]

T. Iwaniec, Projections onto gradient fields and $L^{p}$-estimates for degenerated elliptic operators, Studia Mathematica, 75 (1983), 293-312.  doi: 10.4064/sm-75-3-293-312.

[14]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Mathematica, 172 (1994), 137-161.  doi: 10.1007/BF02392793.

[15]

T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory, Archive for Rational Mechanics and Analysis, 207 (2013), 215-246.  doi: 10.1007/s00205-012-0562-z.

[16]

T. Kuusi and G. Mingione, A nonlinear Stein theorem, Calculus of Variations and Partial Differential Equations, 51 (2014), 45-86.  doi: 10.1007/s00526-013-0666-9.

[17]

G. Mingione, Gradient potential estimates, Journal of the European Mathematical Society, 13 (2011), 459-486.  doi: 10.4171/JEMS/258.

[18]

S. Schwarzacher, Hölder-Zygmund estimates for degenerate parabolic systems, Journal of Differential Equations, 256 (2014), 2423-2448.  doi: 10.1016/j.jde.2014.01.009.

show all references

References:
[1]

L. Beck, Boundary Regularity Results for Local Weak Solutions of Subquadratic Elliptic Systems, Ph.D thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2008.

[2]

D. BreitA. CianchiL. DieningT. Kuusi and S. Schwarzacher, Pointwise Calderón-Zygmund gradient estimates for the $p$-Laplace system, Journal de Mathématiques Pures et Appliquées, 114 (2018), 146-190.  doi: 10.1016/j.matpur.2017.07.011.

[3]

D. BreitA. CianchiL. DieningT. Kuusi and S. Schwarzacher, The $p$-Laplace system with right-hand side in divergence form: Inner and up to the boundary pointwise estimates, Nonlinear Analysis: Theory, Methods and Applications, 153 (2017), 200-212.  doi: 10.1016/j.na.2016.06.011.

[4]

L. Caffarelli and I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Communications on Pure and Applied Mathematics, 51 (1998), 1-21.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G.

[5]

A. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Mathematica, 88 (1952), 85-139.  doi: 10.1007/BF02392130.

[6]

E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, American Journal of Mathematics, 115 (1993), 1107-1134.  doi: 10.2307/2375066.

[7]

L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Mathematicum, 20 (2008), 523-556.  doi: 10.1515/FORUM.2008.027.

[8]

L. DieningP. Kaplický and S. Schwarzacher, BMO estimates for the $p$-Laplacian, Nonlinear Analysis, 75 (2012), 637-650.  doi: 10.1016/j.na.2011.08.065.

[9]

L. DieningB. Stroffolini and A. Verde, Everywhere regularity of functionals with $\varphi$-growth, Manuscripta Mathematica, 129 (2009), 449-481.  doi: 10.1007/s00229-009-0277-0.

[10]

F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials, American Journal of Mathematics, 133 (2011), 1093-1149.  doi: 10.1353/ajm.2011.0023.

[11]

M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 2nd edition, Scuola Normale Superiore di Pisa, 2012. doi: 10.1007/978-88-7642-443-4.

[12]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2003. doi: 10.1142/5002.

[13]

T. Iwaniec, Projections onto gradient fields and $L^{p}$-estimates for degenerated elliptic operators, Studia Mathematica, 75 (1983), 293-312.  doi: 10.4064/sm-75-3-293-312.

[14]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Mathematica, 172 (1994), 137-161.  doi: 10.1007/BF02392793.

[15]

T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory, Archive for Rational Mechanics and Analysis, 207 (2013), 215-246.  doi: 10.1007/s00205-012-0562-z.

[16]

T. Kuusi and G. Mingione, A nonlinear Stein theorem, Calculus of Variations and Partial Differential Equations, 51 (2014), 45-86.  doi: 10.1007/s00526-013-0666-9.

[17]

G. Mingione, Gradient potential estimates, Journal of the European Mathematical Society, 13 (2011), 459-486.  doi: 10.4171/JEMS/258.

[18]

S. Schwarzacher, Hölder-Zygmund estimates for degenerate parabolic systems, Journal of Differential Equations, 256 (2014), 2423-2448.  doi: 10.1016/j.jde.2014.01.009.

[1]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[2]

Sun-Sig Byun, Yumi Cho, Shuang Liang. Calderón-Zygmund estimates for quasilinear elliptic double obstacle problems with variable exponent and logarithmic growth. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3843-3855. doi: 10.3934/dcdsb.2020038

[3]

Marius Ionescu, Luke G. Rogers. Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2155-2175. doi: 10.3934/cpaa.2014.13.2155

[4]

Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076

[5]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[6]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[7]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[8]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[9]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

[10]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[11]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[12]

Fen-Fen Yang. Harnack inequality and gradient estimate for functional G-SDEs with degenerate noise. Probability, Uncertainty and Quantitative Risk, , () : -. doi: 10.3934/puqr.2022008

[13]

Wei Sun. On uniform estimate of complex elliptic equations on closed Hermitian manifolds. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1553-1570. doi: 10.3934/cpaa.2017074

[14]

Sami Aouaoui, Rahma Jlel. Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 781-813. doi: 10.3934/dcds.2021137

[15]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic and Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[16]

Shuang Liang, Shenzhou Zheng. Variable lorentz estimate for stationary stokes system with partially BMO coefficients. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2879-2903. doi: 10.3934/cpaa.2019129

[17]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

[18]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[19]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[20]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (231)
  • HTML views (263)
  • Cited by (0)

Other articles
by authors

[Back to Top]