We study the regularity of solution and of sonic boundary to a degenerate Goursat problem originated from the two-dimensional Riemann problem of the compressible isothermal Euler equations. By using the ideas of characteristic decomposition and the bootstrap method, we show that the solution is uniformly ${C^{1,\frac{1}{6}}}$ up to the degenerate sonic boundary and that the sonic curve is ${C^{1,\frac{1}{6}}}$.
Citation: |
[1] |
X. Chen and Y. X. Zheng, The direct approach to the interaction of rarefaction waves of the two-dimensional Euler equations, Indiana Univ. Math. J., 59 (2010), 231-256.
doi: 10.1512/iumj.2010.59.3752.![]() ![]() ![]() |
[2] |
J. D. Cole and L. P. Cook, Transonic Aerodynamics, North-Holland Series in Applied Mathematics and Mechanics, 1986.
doi: 10.1137/1.9781611970975.![]() ![]() ![]() |
[3] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948.
![]() ![]() |
[4] |
Z. H. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics, Arch. Ration. Mech. Anal., 155 (2000), 277-298.
doi: 10.1007/s002050000113.![]() ![]() ![]() |
[5] |
G. Glimm, X. Ji, J. Li, X. Li, P. Zhang, T. Zhang and Y. Zheng, Transonic shock formation in a rarefaction Riemann problem for the 2-D compressible Euler equations, SIAM J. Appl. Math., 69 (2008), 720-742.
doi: 10.1137/07070632X.![]() ![]() ![]() |
[6] |
Y. B. Hu and J. Q. Li, Sonic-supersonic solutions for the two-dimensional steady full Euler equations, submitted, 2017.
![]() |
[7] |
Y. B. Hu, J. Q. Li and W. C. Sheng, Degenerate Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations, Z. Angew. Math. Phys., 63 (2012), 1021-1046.
doi: 10.1007/s00033-012-0203-2.![]() ![]() ![]() |
[8] |
Y. B. Hu and T. Li, An improved regularity result of semi-hyperbolic patch problems for the 2-D isentropic Euler equations, J. Math. Anal. Appl., 467 (2018), 1174-1193.
doi: 10.1016/j.jmaa.2018.07.064.![]() ![]() ![]() |
[9] |
Y. B. Hu and G. D. Wang, Semi-hyperbolic patches of solutions to the two-dimensional nonlinear wave system for Chaplygin gases, J. Differential Equations, 257 (2014), 1579-1590.
doi: 10.1016/j.jde.2014.05.020.![]() ![]() ![]() |
[10] |
G. Lai and W. C. Sheng, Centered wave bubbles with sonic boundary of pseudosteady Guderley Mach reflection configurations in gas dynamics, J. Math. Pure Appl., 104 (2015), 179-206.
doi: 10.1016/j.matpur.2015.02.005.![]() ![]() ![]() |
[11] |
J. Q. Li, Z. C. Yang and Y. X. Zheng, Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations, J. Differential Equations, 250 (2011), 782-798.
doi: 10.1016/j.jde.2010.07.009.![]() ![]() ![]() |
[12] |
J. Q. Li, T. Zhang and S. L. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Longman, Harlow, 1998.
![]() ![]() |
[13] |
J. Q. Li, T. Zhang and Y. X. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations, Comm. Math. Phys., 267 (2006), 1-12.
doi: 10.1007/s00220-006-0033-1.![]() ![]() ![]() |
[14] |
J. Q. Li and Y. X. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Rat. Mech. Anal., 193 (2009), 623-657.
doi: 10.1007/s00205-008-0140-6.![]() ![]() ![]() |
[15] |
J. Q. Li and Y. Zheng, Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations, Comm. Math. Phys., 296 (2010), 303-321.
doi: 10.1007/s00220-010-1019-6.![]() ![]() ![]() |
[16] |
M. J. Li and Y. X. Zheng, Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Rational Mech. Anal., 201 (2011), 1069-1096.
doi: 10.1007/s00205-011-0410-6.![]() ![]() ![]() |
[17] |
W. C. Sheng, G. D. Wang and T. Zhang, Critical transonic shock and supersonic bubble in oblique rarefaction wave reflection along a compressive corner, SIAM J. Appl. Math., 70 (2010), 3140-3155.
doi: 10.1137/090760362.![]() ![]() ![]() |
[18] |
W. C. Sheng and S. K. You, Interaction of a centered simple wave and a planar rarefaction wave of the two-dimensional Euler equations for pseudo-steady compressible flow, J. Math. Pures Appl., 114 (2018), 29-50.
doi: 10.1016/j.matpur.2017.07.019.![]() ![]() ![]() |
[19] |
K. Song, Semi-hyperbolic patches arising from a transonic shock in simple waves interaction, J. Korean Math. Soc., 50 (2013), 945-957.
doi: 10.4134/JKMS.2013.50.5.945.![]() ![]() ![]() |
[20] |
K. Song, Q. Wang and Y. X. Zheng, The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219.
doi: 10.1137/140964382.![]() ![]() ![]() |
[21] |
K. Song and Y. X. Zheng, Semi-hyperbolic patches of solutions of the pressure gradient system, Discrete Contin. Dyn. Syst. A, 24 (2009), 1365-1380.
doi: 10.3934/dcds.2009.24.1365.![]() ![]() ![]() |
[22] |
A. M. Tesdall, R. Sanders and B. L. Keyfitz, The triple point paradox for the nonlinear wave system, SIAM J. Appl. Math., 67 (2006), 321-336.
doi: 10.1137/060660758.![]() ![]() ![]() |
[23] |
A. M. Tesdall, R. Sanders and B. L. Keyfitz, Self-similar solutions for the triple point paradox in gasdynamics, SIAM J. Appl. Math., 68 (2008), 1360-1377.
doi: 10.1137/070698567.![]() ![]() ![]() |
[24] |
Q. Wang and Y. X. Zheng, The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics, Indiana Univ. Math. J., 63 (2014), 385-402.
doi: 10.1512/iumj.2014.63.5244.![]() ![]() ![]() |
[25] |
T. Y. Zhang and Y. X. Zheng, Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.
doi: 10.1512/iumj.2014.63.5434.![]() ![]() ![]() |
[26] |
T. Y. Zhang and Y. X. Zheng, The structure of solutions near a sonic line in gas dynamics via the pressure gradient equation, J. Math. Anal. Appl., 443 (2016), 39-56.
doi: 10.1016/j.jmaa.2016.04.002.![]() ![]() ![]() |
[27] |
T. Y. Zhang and Y. X. Zheng, Existence of classical sonic-supersonic solutions for the pseudo steady Euler equations (in Chinese), Scientia Sinica Mathematica, 47 (2017), 1-18.
doi: 10.1512/iumj.2014.63.5434.![]() ![]() ![]() |
[28] |
Y. X. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems, Birkhauser, Boston, 2001.
doi: 10.1007/978-1-4612-0141-0.![]() ![]() ![]() |
The semi-hyperbolic patch
Case 2
The region of