
-
Previous Article
Stability of solutions to the Riemann problem for a thin film model of a perfectly soluble anti-surfactant solution
- CPAA Home
- This Issue
-
Next Article
Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term
A note on multiplicity of solutions near resonance of semilinear elliptic equations
1. | School of Mathematics, Tianjin University, Tianjin, 300072, China |
2. | Department of Mathematics, Wenzhou University, Wenzhou, Zhejiang, 325035, China |
$ -\Delta u = \lambda u+f(x,u) $ |
$ f $ |
$ \Lambda_- $ |
$ \mu_k $ |
$ {\mathcal D} $ |
$ \mathbb{R} $ |
$ \lambda\in\Lambda_- \cap {\mathcal D} $ |
References:
[1] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977.
doi: 10.1007/BFb0087685. |
[2] |
X. Chang and Y. Li,
Existence and multiplicity of nontrivial solutions for semilinear elliptic Dirichlet problems across resonance, Topol. Methods Nonlinear Anal., 36 (2010), 285-310.
|
[3] |
R. Chiappinelli, J. Mawhin and R. Nugari,
Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities, Nonlinear Anal. TMA, 18 (1992), 1099-1112.
doi: 10.1016/0362-546X(92)90155-8. |
[4] |
C. Conley, Isolated Invariant Sets and the Morse Index, Regional Conference Series in Mathematics 38, Amer. Math. Soc., Providence RI, 1978.
doi: 10.1090/cbms/038. |
[5] |
C. Conley and R. Easton,
Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 158 (1971), 35-61.
doi: 10.2307/1995770. |
[6] |
F. de Paiva and E. Massa,
Semilinear elliptic problems near resonance with a nonprincipal eigenvalue, J. Math. Anal. Appl., 342 (2008), 638-650.
doi: 10.1016/j.jmaa.2007.12.053. |
[7] |
M. Filippakis, L. Gasiński and N. Papageorgiou,
A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential, Nonlinear Anal. TMA, 61 (2005), 61-75.
doi: 10.1016/j.na.2004.11.012. |
[8] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math. 840, Springer Verlag, Berlin, 1981.
doi: 10.1007/BFb0089647. |
[9] |
C. Li, D. Li and Z. Zhang,
Dynamic bifurcation from infinity of nonlinear evolution equations, SIAM J. Appl. Dyn. Syst., 16 (2017), 1831-1868.
doi: 10.1137/16M1107358. |
[10] |
D. Li, G. Shi and X. Song, Linking theorems of local semiflows on complete metric spaces, arXiv: 1312.1868. |
[11] |
D. Li and Z. Wang,
Local and global dynamic bifurcations of nonlinear evolution equations, Indiana Univ. Math. J., 67 (2018), 583-621.
doi: 10.1512/iumj.2018.67.7292. |
[12] |
T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science-A: Monographs and Treatises, vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. |
[13] |
T. Ma and S. Wang,
Dynamic bifurcation of nonlinear evolution equations, Chinese Ann. Math. Ser. B, 26 (2005), 185-206.
doi: 10.1142/S0252959905000166. |
[14] |
E. Massa and R. Rossato,
Multiple solutions for an elliptic system near resonance, J. Math. Anal. Appl., 420 (2014), 1228-1250.
doi: 10.1016/j.jmaa.2014.06.043. |
[15] |
J. Mawhin and K. Schmitt,
Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Results Math., 14 (1988), 138-146.
doi: 10.1007/BF03323221. |
[16] |
C. McCord,
Poincaré-Lefschetz duality for the homolopy Conley index, Trans. Amer. Math. Soc., 329 (1992), 233-252.
doi: 10.2307/2154086. |
[17] |
K. Mischaikow and M. Mrozek, Conley Index, Handbook of Dynamical Systems, vol. 2, Elsevier, New York, 2002,393-460.
doi: 10.1016/S1874-575X(02)80030-3. |
[18] |
M. Mrozek and R. Srzednicki,
On time-duality of the Conley index, Results Math., 24 (1993), 161-167.
doi: 10.1007/BF03322325. |
[19] |
N. Papageorgiou and F. Papalini,
Multiple solutions for nearly resonant nonlinear Dirichlet problems, Potential Anal., 37 (2012), 247-279.
doi: 10.1007/s11118-011-9255-8. |
[20] |
K. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-72833-4. |
[21] |
J. Saut and R. Temam,
Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations, 4 (1979), 293-319.
doi: 10.1080/03605307908820096. |
[22] |
K. Schmitt and Z. Wang,
On bifurcation from infinity for potential operators, Differential and Integral Equations, 4 (1991), 933-943.
|
[23] |
G. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[24] |
J. Su and C. Tang,
Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues, Nonlinear Anal. TMA, 44 (2001), 311-321.
doi: 10.1016/S0362-546X(99)00265-5. |
show all references
References:
[1] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977.
doi: 10.1007/BFb0087685. |
[2] |
X. Chang and Y. Li,
Existence and multiplicity of nontrivial solutions for semilinear elliptic Dirichlet problems across resonance, Topol. Methods Nonlinear Anal., 36 (2010), 285-310.
|
[3] |
R. Chiappinelli, J. Mawhin and R. Nugari,
Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities, Nonlinear Anal. TMA, 18 (1992), 1099-1112.
doi: 10.1016/0362-546X(92)90155-8. |
[4] |
C. Conley, Isolated Invariant Sets and the Morse Index, Regional Conference Series in Mathematics 38, Amer. Math. Soc., Providence RI, 1978.
doi: 10.1090/cbms/038. |
[5] |
C. Conley and R. Easton,
Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 158 (1971), 35-61.
doi: 10.2307/1995770. |
[6] |
F. de Paiva and E. Massa,
Semilinear elliptic problems near resonance with a nonprincipal eigenvalue, J. Math. Anal. Appl., 342 (2008), 638-650.
doi: 10.1016/j.jmaa.2007.12.053. |
[7] |
M. Filippakis, L. Gasiński and N. Papageorgiou,
A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential, Nonlinear Anal. TMA, 61 (2005), 61-75.
doi: 10.1016/j.na.2004.11.012. |
[8] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math. 840, Springer Verlag, Berlin, 1981.
doi: 10.1007/BFb0089647. |
[9] |
C. Li, D. Li and Z. Zhang,
Dynamic bifurcation from infinity of nonlinear evolution equations, SIAM J. Appl. Dyn. Syst., 16 (2017), 1831-1868.
doi: 10.1137/16M1107358. |
[10] |
D. Li, G. Shi and X. Song, Linking theorems of local semiflows on complete metric spaces, arXiv: 1312.1868. |
[11] |
D. Li and Z. Wang,
Local and global dynamic bifurcations of nonlinear evolution equations, Indiana Univ. Math. J., 67 (2018), 583-621.
doi: 10.1512/iumj.2018.67.7292. |
[12] |
T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science-A: Monographs and Treatises, vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. |
[13] |
T. Ma and S. Wang,
Dynamic bifurcation of nonlinear evolution equations, Chinese Ann. Math. Ser. B, 26 (2005), 185-206.
doi: 10.1142/S0252959905000166. |
[14] |
E. Massa and R. Rossato,
Multiple solutions for an elliptic system near resonance, J. Math. Anal. Appl., 420 (2014), 1228-1250.
doi: 10.1016/j.jmaa.2014.06.043. |
[15] |
J. Mawhin and K. Schmitt,
Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Results Math., 14 (1988), 138-146.
doi: 10.1007/BF03323221. |
[16] |
C. McCord,
Poincaré-Lefschetz duality for the homolopy Conley index, Trans. Amer. Math. Soc., 329 (1992), 233-252.
doi: 10.2307/2154086. |
[17] |
K. Mischaikow and M. Mrozek, Conley Index, Handbook of Dynamical Systems, vol. 2, Elsevier, New York, 2002,393-460.
doi: 10.1016/S1874-575X(02)80030-3. |
[18] |
M. Mrozek and R. Srzednicki,
On time-duality of the Conley index, Results Math., 24 (1993), 161-167.
doi: 10.1007/BF03322325. |
[19] |
N. Papageorgiou and F. Papalini,
Multiple solutions for nearly resonant nonlinear Dirichlet problems, Potential Anal., 37 (2012), 247-279.
doi: 10.1007/s11118-011-9255-8. |
[20] |
K. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-72833-4. |
[21] |
J. Saut and R. Temam,
Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations, 4 (1979), 293-319.
doi: 10.1080/03605307908820096. |
[22] |
K. Schmitt and Z. Wang,
On bifurcation from infinity for potential operators, Differential and Integral Equations, 4 (1991), 933-943.
|
[23] |
G. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[24] |
J. Su and C. Tang,
Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues, Nonlinear Anal. TMA, 44 (2001), 311-321.
doi: 10.1016/S0362-546X(99)00265-5. |
[1] |
Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489 |
[2] |
Kelei Wang. Recent progress on stable and finite Morse index solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 3805-3816. doi: 10.3934/era.2021062 |
[3] |
Todd Young. A result in global bifurcation theory using the Conley index. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387 |
[4] |
Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431 |
[5] |
Nikolaos S. Papageorgiou, Calogero Vetro, Francesca Vetro. Multiple solutions for (p, 2)-equations at resonance. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 347-374. doi: 10.3934/dcdss.2019024 |
[6] |
Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629 |
[7] |
Ketty A. De Rezende, Mariana G. Villapouca. Discrete conley index theory for zero dimensional basic sets. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1359-1387. doi: 10.3934/dcds.2017056 |
[8] |
Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809 |
[9] |
Belgacem Rahal, Cherif Zaidi. On finite Morse index solutions of higher order fractional elliptic equations. Evolution Equations and Control Theory, 2021, 10 (3) : 575-597. doi: 10.3934/eect.2020081 |
[10] |
Rong Xiao, Yuying Zhou. Multiple solutions for a class of semilinear elliptic variational inclusion problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 991-1002. doi: 10.3934/jimo.2011.7.991 |
[11] |
Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795 |
[12] |
Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601 |
[13] |
Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801 |
[14] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[15] |
Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886 |
[16] |
David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335 |
[17] |
Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 4215-4228. doi: 10.3934/era.2021080 |
[18] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2505-2518. doi: 10.3934/cpaa.2020272 |
[19] |
Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961 |
[20] |
M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]