\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Entire subsolutions of Monge-Ampère type equations

  • * Corresponding author

    * Corresponding author 

The first author is supported by Shandong Provincial Natural Science Foundation (ZR2018LA006)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider the subsolutions of the Monge-Ampère type equations $ {\det}^{\frac{1}{n}}(D^2u+\alpha I) = f(u) $ in $ \mathbb{R}^{n} $. We obtain the necessary and sufficient condition of the existence of subsolutions.

    Mathematics Subject Classification: Primary: 35J96, 35B08; Secondary: 35A01.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Brezis, Semilinear equations in ${\mathbb R}^N$ without condition at infinity, Appl. Math. Optim., 12 (1984), 271-282.  doi: 10.1007/BF01449045.
    [2] J. G. BaoX. H. Ji and H. G. Li, Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations, J. Differential Equations, 253 (2012), 2140-2160.  doi: 10.1016/j.jde.2012.06.018.
    [3] L. A. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations, I. Monge-Ampère equation, Comm. Pure Appl. Math., 37 (1984), 369-402.  doi: 10.1002/cpa.3160370306.
    [4] I. Capuzzo DolcettaF. Leoni and A. Vitolo, Entire subsolutions of fully nonlinear degenerate elliptic equations, Bull. Inst. Math. Acad. Sin. (N.S.), 9 (2014), 147-161. 
    [5] P. F. Guan and X. J. Wang, On a Monge-Ampère equation arising in geometric optics, J. Differential Geom., 48 (1998), 205-223. 
    [6] Q. Han and J. X. Hong, Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, Mathematical Surveys and Monographs, 130, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/130.
    [7] Y. HuangF. D. Jiang and J. K. Liu, Boundary $C^ {2, \alpha}$ estimates for Monge-Ampère type equations, Adv. Math., 281 (2015), 706-733.  doi: 10.1016/j.aim.2014.12.043.
    [8] N. M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, (Russian), Questions in Quantum Field Theory and Statistical Physics, 4. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)), 131 (1983), 72–79.
    [9] X. H. Ji and J. G. Bao, Necessary and sufficient conditions on solvability for Hessian inequalities, Proc. Amer. Math. Soc., 138 (2010), 175-188.  doi: 10.1090/S0002-9939-09-10032-1.
    [10] F. D. JiangN. S. Trudinger and X. P. Yang, On the Dirichlet problem for Monge-Ampère type equations, Calc. Var. Partial Differential Equations, 49 (2014), 1223-1236.  doi: 10.1007/s00526-013-0619-3.
    [11] Q. N. JinY. Y. Li and H. Y. Xu, Nonexistence of positive solutions for some fully nonlinear elliptic equations, Methods Appl. Anal., 12 (2005), 441-449.  doi: 10.4310/MAA.2005.v12.n4.a5.
    [12] J. B. Keller, On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.  doi: 10.1002/cpa.3160100402.
    [13] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 75-108. 
    [14] J. K. LiuN. S. Trudinger and X. J. Wang, Interior $C^{2, \alpha}$ regularity for potential functions in optimal transportation, Comm. Partial Differential Equations, 35 (2010), 165-184.  doi: 10.1080/03605300903236609.
    [15] C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis (a collection of papers dedicated to Lipman Bers), Academic Press, (1974), 245–272.
    [16] X. N. MaN. S. Trudinger and X. J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151-183.  doi: 10.1007/s00205-005-0362-9.
    [17] R. Osserman, On the inequality $\Delta u\geq f(u)$, Pacific J. Math., 7 (1957), 1641-1647. 
    [18] N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications, Adv. Lect. Math. (Handbook of geometric analysis, a collection of papers dedicated to Lipman Bers), Int. Press, Somerville, MA, 1 (2008), 467–524.
    [19] N. S. Trudinger and X. J. Wang, On the second boundary value problem for Monge-Ampère type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 8 (2009), 143-174. 
    [20] X. J. Wang, On the design of a reflector antenna, Inverse Problems, 12 (1996), 351-375.  doi: 10.1088/0266-5611/12/3/013.
  • 加载中
SHARE

Article Metrics

HTML views(401) PDF downloads(313) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return