We are concerned with nonlinear fractional Choquard equations involving critical growth in the sense of the Hardy-Littlewood-Sobolev inequality. Without the Ambrosetti-Rabinowitz condition or monotonicity condition on the nonlinearity, we establish the existence of radially symmetric ground state solutions.
Citation: |
[1] |
G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line-tenstion effect, Arch. Ration. Mech. Anal., 144 (1998), 1-46.
doi: 10.1007/s002050050111.![]() ![]() ![]() |
[2] |
H. Berestycki and P. Lions, Nonlinear scalar field equations I. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1990), 90-117.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
[3] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405.![]() ![]() ![]() |
[4] |
L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.
doi: 10.1007/s00222-007-0086-6.![]() ![]() ![]() |
[5] |
D. Cassani and J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper critical growth, Adv. Nonlinear Anal., 8 (2019), 1184–1212.
doi: 10.1515/anona-2018-0019.![]() ![]() ![]() |
[6] |
X. J. Chang and Z. Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494.
doi: 10.1088/0951-7715/26/2/479.![]() ![]() ![]() |
[7] |
Y. Chen and C. Liu, Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity, 29 (2016), 1827-1842.
doi: 10.1088/0951-7715/29/6/1827.![]() ![]() ![]() |
[8] |
W. X. Chen, C. M. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure. Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[9] |
A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.
doi: 10.1016/j.jmaa.2004.03.034.![]() ![]() ![]() |
[10] |
B. Calista, Regularity of solutions to the fractional Laplace equation, http://math.uchicago.edu/may/REU2014/REUPapers/Bernard.pdf, 2014.
![]() |
[11] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchiker's guide to the fractional Sobolev space, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[12] |
P. D'avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl., 25 (2015), 1447-1476.
doi: 10.1142/S0218202515500384.![]() ![]() ![]() |
[13] |
H. Genev and G. Venkov, Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 903-923.
doi: 10.3934/dcdss.2012.5.903.![]() ![]() ![]() |
[14] |
Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 593 (2005), 385-424.
doi: 10.1142/S021949370500150X.![]() ![]() ![]() |
[15] |
F. Gao and M. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math., 61 (2018), 1219-1242.
doi: 10.1007/s11425-016-9067-5.![]() ![]() ![]() |
[16] |
N. Laskin, Fractional quantum mechanics ans Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2.![]() ![]() ![]() |
[17] |
G. D. Li and C. L. Tang, Existence of ground state solutions for Choquard Equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear, Commun. Pure Appl. Anal., 18 (2019), 285-300.
doi: 10.3934/cpaa.2019015.![]() ![]() ![]() |
[18] |
E. H. Lieb and M. Loss, Analysis, 2nd edn, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, 2001.
doi: 10.1090/gsm/014.![]() ![]() ![]() |
[19] |
E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.
doi: 10.1002/sapm197757293.![]() ![]() ![]() |
[20] |
P. L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Analysis, 49 (1982), 315-334.
doi: 10.1016/0022-1236(82)90072-6.![]() ![]() ![]() |
[21] |
X. Q. Liu, J. Q. Liu and Z.-Q. Wang, Ground states for quasilinear Schrödinger equationns with critical growth, Calc. Var. Partial Differential Equations, 46 (2013), 641-669.
doi: 10.1007/s00526-012-0497-0.![]() ![]() ![]() |
[22] |
J. Liu, J. F. Liao and C. L. Tang, Ground state solution for a class of Schrödinger equations involving general critical growth term, Nonlinearity, 30 (2017), 899-911.
doi: 10.1088/1361-6544/aa5659.![]() ![]() ![]() |
[23] |
P. Ma and J. Zhang, Existence and multiplicity of solutions for fractional Choquard equations, Nonlinear Analysis, 164 (2017), 100-117.
doi: 10.1016/j.na.2017.07.011.![]() ![]() ![]() |
[24] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
[25] |
V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
[26] |
V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579.
doi: 10.1090/S0002-9947-2014-06289-2.![]() ![]() ![]() |
[27] |
V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theorey Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1.![]() ![]() ![]() |
[28] |
T. Mukherjee and K. Sreenadh, Fractional Choquard equations with critical nonlinearities, NoDEA Nonlinear Differential Equations Appl., 24 (2017).
doi: 10.1007/s00030-017-0487-1.![]() ![]() ![]() |
[29] |
S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
![]() |
[30] |
Z. Shen, F. Gao and M. Yang, Ground states for nonlinear fractional Choquard equations with general nonlinearities, Math. Methods Appl. Sci., 39 (2016), 4082-4098.
doi: 10.1002/mma.3849.![]() ![]() ![]() |
[31] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace ooperator, Comm. Pure Apple. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
[32] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transtion and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020.![]() ![]() ![]() |
[33] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No, 30, Princeton University Press, Princeton, 1970.
![]() ![]() |
[34] |
X. He and W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differential Equations, 55 (2016).
doi: 10.1007/s00526-016-1045-0.![]() ![]() ![]() |
[35] |
J. J. Zhang and W. M. Zou, A Berestycki-Lions Theorem revisited, Commun. Contemp. Math., 14 (2012), 1250033.
doi: 10.1142/S0219199712500332.![]() ![]() ![]() |