• Previous Article
    The continuous morbidostat: A chemostat with controlled drug application to select for drug resistance mutants
  • CPAA Home
  • This Issue
  • Next Article
    Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator
January  2020, 19(1): 175-202. doi: 10.3934/cpaa.2020010

Droplet phase in a nonlocal isoperimetric problem under confinement

1. 

Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada

2. 

Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada

3. 

Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, USA

Received  August 2018 Revised  March 2019 Published  July 2019

We address small volume-fraction asymptotic properties of a nonlocal isoperimetric functional with a confinement term, derived as the sharp interface limit of a variational model for self-assembly of diblock copolymers under confinement by nanoparticle inclusion. We introduce a small parameter $ \eta $ to represent the size of the domains of the minority phase, and study the resulting droplet regime as $ \eta\to 0 $. By considering confinement densities which are spatially variable and attain a unique nondegenerate maximum, we present a two-scale asymptotic analysis wherein a separation of length scales is captured due to competition between the nonlocal repulsive and confining attractive effects in the energy. A key role is played by a parameter $ M $ which gives the total volume of the droplets at order $ \eta^3 $ and its relation to existence and non-existence of Gamow's Liquid Drop model on $ \mathbb{R}^3 $. For large values of $ M $, the minority phase splits into several droplets at an intermediate scale $ \eta^{1/3} $, while for small $ M $ minimizers form a single droplet converging to the maximum of the confinement density.

Citation: Stan Alama, Lia Bronsard, Rustum Choksi, Ihsan Topaloglu. Droplet phase in a nonlocal isoperimetric problem under confinement. Communications on Pure and Applied Analysis, 2020, 19 (1) : 175-202. doi: 10.3934/cpaa.2020010
References:
[1]

Emilio Acerbi, Nicola Fusco and Massimiliano Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys., 322 (2013), 515–557. doi: 10.1007/s00220-013-1733-y.

[2]

Stan Alama, Lia Bronsard and Ihsan Topaloglu, Sharp interface limit of an energy modelling nanoparticle-polymer blends, Interfaces Free Bound, 18 (2016), 263–290. doi: 10.4171/IFB/364.

[3]

Frank S. Bates and Glenn H. Fredrickson, Block copolymers–designer soft materials, Physics Today, 52 (1999), 32-38. 

[4]

Marco Bonacini and Riccardo Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem on $\mathbb{R}^ N$, SIAM J. Math. Anal., 46 (2014), 2310–2349. doi: 10.1137/130929898.

[5]

Almut Burchard, Rustum Choksi and Ihsan Topaloglu, Nonlocal shape optimization via interactions of attractive and repulsive potentials, Indiana Univ. Math. J., 67 (2018), 375–395. doi: 10.1512/iumj.2018.67.6234.

[6]

Djalil Chafaï, Nathael Gozlan and Pierre-André Zitt, First-order global asymptotics for confined particles with singular pair repulsion, Ann. Appl. Probab., 24 (2014), 2371–2413. doi: 10.1214/13-AAP980.

[7]

Rustum ChoksiCyrill B. Muratov and Ihsan Topaloglu, An old problem resurfaces nonlocally: Gamow's liquid drops inspire today's research and applications, Notices Amer. Math. Soc., 64 (2017), 1275-1283. 

[8]

Rustum Choksi and Mark A. Peletier, Small volume fraction limit of the diblock copolymer problem: Ⅰ. Sharp-interface functional, SIAM J. Math. Anal., 42 (2010), 1334-1370.  doi: 10.1137/090764888.

[9]

Yao-Li ChuangMaria R. D'OrsognaDaniel MarthalerAndrea L. Bertozzi and Lincoln S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47.  doi: 10.1016/j.physd.2007.05.007.

[10]

Rupert Frank, Rowan Killip and Phan Thành Nam, Nonexistence of large nuclei in the liquid drop model, Lett. Math. Phys., 106 (2016), 1033–1036. doi: 10.1007/s11005-016-0860-8.

[11]

Rupert L. Frank and Elliot H. Lieb, A "liquid-solid" phase transition in a simple model for swarming, based on the "no flat-spots" theorem for subharmonic functions, Indiana Univ. Math. J., 67 (2018), 1547-1569.  doi: 10.1512/iumj.2018.67.7398.

[12]

Rupert L. Frank and Elliott H. Lieb, A compactness lemma and its application to the existence of minimizers for the liquid drop model, SIAM J. Math. Anal., 47 (2015), 4436-4450.  doi: 10.1137/15M1010658.

[13]

Glenn Fredrickson, Equilibrium Theory of Inhomogeneous Polymers, Oxford Science Publications, 2005.

[14]

Valeriy V. Ginzburg, Feng Qiu, Marco Paniconi, Gongwen Peng, David Jasnow and Anna C Balazs, Simulation of hard particles in a phase-separating binary mixture, Phys. Rev. Lett., 82 (1999), 4026-4029.

[15]

Shay Gueron and Itai Shafrir, On a discrete variational problem involving interacting particles, SIAM J. Appl. Math., 60 (2000), 1–17 (electronic). doi: 10.1137/S0036139997315258.

[16]

Vesa Julin,, Isoperimetric problem with a Coulomb repulsive term, Indiana Univ. Math. J., 63 (2014), 77–89. doi: 10.1512/iumj.2014.63.5185.

[17]

Hans Knüpfer and Cyrill B. Muratov, On an isoperimetric problem with a competing nonlocal term Ⅰ: The planar case, Comm. Pure Appl. Math., 66 (2013), 1129-1162.  doi: 10.1002/cpa.21451.

[18]

Hans Knüpfer and Cyrill B. Muratov, On an isoperimetric problem with a competing nonlocal term Ⅱ: The general case, Comm. Pure Appl. Math., 67 (2014), 1974-1994.  doi: 10.1002/cpa.21479.

[19]

Hans KnüpferCyrill B. Muratov and Matteo Novaga, Low density phases in a uniformly charged liquid, Comm. Math. Phys., 345 (2016), 141-183.  doi: 10.1007/s00220-016-2654-3.

[20]

Pierre-Louis Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145.

[21]

Jiangfeng Lu and Felix Otto, Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model, Comm. Pure Appl. Math., 67 (2014), 1605–1617. doi: 10.1002/cpa.21477.

[22]

Jiangfeng Lu and Felix Otto, An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus, arXiv: 1508.07172, 2015.

[23]

Francesco Maggi, Sets of Finite Perimeter and Geometric Variational Problems, volume 135 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, first edition, 2012. doi: 10.1017/CBO9781139108133.

[24]

Daniela Morale, Vincenzo Capasso and Karl Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations, J. Math. Biol., 50 (2005), 49–66. doi: 10.1007/s00285-004-0279-1.

[25]

Phan Thành Nam and Hanne van den Bosch, Nonexistence in Thomas–Fermi–Dirac–von Weizsäcker theory with small nuclear charges, Math. Phys. Anal. Geom., 20 (2017), Art. 6, 1-32. doi: 10.1007/s11040-017-9238-0.

[26]

Takao Ohta and Kyozi Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621–2632.

[27]

Etienne Sandier and Sylvia Serfaty, Vortices in The Magnetic GInzburg-LAndau Model, Progress in Nonlinear Differential Equations and their Applications, 70. Birkhäuser Boston, Inc., Boston, MA, 2007.

[28]

An-Chang Shi and Baohui Li, Self-assembly of diblock copolymers under confinement, Soft Matter, 9 (2013), 1398–1413.

[29]

James H. von Brecht, David Uminsky, L. Bertozzi, Theodore Kolokolnikov and Andrea L. Predicting pattern formation in particle interactions, Math. Models Methods Appl. Sci., 22(suppl. 1) (2012), 1140002, 1-31. doi: 10.1142/S0218202511400021.

show all references

References:
[1]

Emilio Acerbi, Nicola Fusco and Massimiliano Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys., 322 (2013), 515–557. doi: 10.1007/s00220-013-1733-y.

[2]

Stan Alama, Lia Bronsard and Ihsan Topaloglu, Sharp interface limit of an energy modelling nanoparticle-polymer blends, Interfaces Free Bound, 18 (2016), 263–290. doi: 10.4171/IFB/364.

[3]

Frank S. Bates and Glenn H. Fredrickson, Block copolymers–designer soft materials, Physics Today, 52 (1999), 32-38. 

[4]

Marco Bonacini and Riccardo Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem on $\mathbb{R}^ N$, SIAM J. Math. Anal., 46 (2014), 2310–2349. doi: 10.1137/130929898.

[5]

Almut Burchard, Rustum Choksi and Ihsan Topaloglu, Nonlocal shape optimization via interactions of attractive and repulsive potentials, Indiana Univ. Math. J., 67 (2018), 375–395. doi: 10.1512/iumj.2018.67.6234.

[6]

Djalil Chafaï, Nathael Gozlan and Pierre-André Zitt, First-order global asymptotics for confined particles with singular pair repulsion, Ann. Appl. Probab., 24 (2014), 2371–2413. doi: 10.1214/13-AAP980.

[7]

Rustum ChoksiCyrill B. Muratov and Ihsan Topaloglu, An old problem resurfaces nonlocally: Gamow's liquid drops inspire today's research and applications, Notices Amer. Math. Soc., 64 (2017), 1275-1283. 

[8]

Rustum Choksi and Mark A. Peletier, Small volume fraction limit of the diblock copolymer problem: Ⅰ. Sharp-interface functional, SIAM J. Math. Anal., 42 (2010), 1334-1370.  doi: 10.1137/090764888.

[9]

Yao-Li ChuangMaria R. D'OrsognaDaniel MarthalerAndrea L. Bertozzi and Lincoln S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47.  doi: 10.1016/j.physd.2007.05.007.

[10]

Rupert Frank, Rowan Killip and Phan Thành Nam, Nonexistence of large nuclei in the liquid drop model, Lett. Math. Phys., 106 (2016), 1033–1036. doi: 10.1007/s11005-016-0860-8.

[11]

Rupert L. Frank and Elliot H. Lieb, A "liquid-solid" phase transition in a simple model for swarming, based on the "no flat-spots" theorem for subharmonic functions, Indiana Univ. Math. J., 67 (2018), 1547-1569.  doi: 10.1512/iumj.2018.67.7398.

[12]

Rupert L. Frank and Elliott H. Lieb, A compactness lemma and its application to the existence of minimizers for the liquid drop model, SIAM J. Math. Anal., 47 (2015), 4436-4450.  doi: 10.1137/15M1010658.

[13]

Glenn Fredrickson, Equilibrium Theory of Inhomogeneous Polymers, Oxford Science Publications, 2005.

[14]

Valeriy V. Ginzburg, Feng Qiu, Marco Paniconi, Gongwen Peng, David Jasnow and Anna C Balazs, Simulation of hard particles in a phase-separating binary mixture, Phys. Rev. Lett., 82 (1999), 4026-4029.

[15]

Shay Gueron and Itai Shafrir, On a discrete variational problem involving interacting particles, SIAM J. Appl. Math., 60 (2000), 1–17 (electronic). doi: 10.1137/S0036139997315258.

[16]

Vesa Julin,, Isoperimetric problem with a Coulomb repulsive term, Indiana Univ. Math. J., 63 (2014), 77–89. doi: 10.1512/iumj.2014.63.5185.

[17]

Hans Knüpfer and Cyrill B. Muratov, On an isoperimetric problem with a competing nonlocal term Ⅰ: The planar case, Comm. Pure Appl. Math., 66 (2013), 1129-1162.  doi: 10.1002/cpa.21451.

[18]

Hans Knüpfer and Cyrill B. Muratov, On an isoperimetric problem with a competing nonlocal term Ⅱ: The general case, Comm. Pure Appl. Math., 67 (2014), 1974-1994.  doi: 10.1002/cpa.21479.

[19]

Hans KnüpferCyrill B. Muratov and Matteo Novaga, Low density phases in a uniformly charged liquid, Comm. Math. Phys., 345 (2016), 141-183.  doi: 10.1007/s00220-016-2654-3.

[20]

Pierre-Louis Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145.

[21]

Jiangfeng Lu and Felix Otto, Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model, Comm. Pure Appl. Math., 67 (2014), 1605–1617. doi: 10.1002/cpa.21477.

[22]

Jiangfeng Lu and Felix Otto, An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus, arXiv: 1508.07172, 2015.

[23]

Francesco Maggi, Sets of Finite Perimeter and Geometric Variational Problems, volume 135 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, first edition, 2012. doi: 10.1017/CBO9781139108133.

[24]

Daniela Morale, Vincenzo Capasso and Karl Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations, J. Math. Biol., 50 (2005), 49–66. doi: 10.1007/s00285-004-0279-1.

[25]

Phan Thành Nam and Hanne van den Bosch, Nonexistence in Thomas–Fermi–Dirac–von Weizsäcker theory with small nuclear charges, Math. Phys. Anal. Geom., 20 (2017), Art. 6, 1-32. doi: 10.1007/s11040-017-9238-0.

[26]

Takao Ohta and Kyozi Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621–2632.

[27]

Etienne Sandier and Sylvia Serfaty, Vortices in The Magnetic GInzburg-LAndau Model, Progress in Nonlinear Differential Equations and their Applications, 70. Birkhäuser Boston, Inc., Boston, MA, 2007.

[28]

An-Chang Shi and Baohui Li, Self-assembly of diblock copolymers under confinement, Soft Matter, 9 (2013), 1398–1413.

[29]

James H. von Brecht, David Uminsky, L. Bertozzi, Theodore Kolokolnikov and Andrea L. Predicting pattern formation in particle interactions, Math. Models Methods Appl. Sci., 22(suppl. 1) (2012), 1140002, 1-31. doi: 10.1142/S0218202511400021.

Figure 1.  The attraction to the origin and scaling at the rate $ \delta = \eta^{1/3} $
Figure 2.  Minimizing configurations of the second-order energy $ \mathsf{F}_{m^1,\dots,m^n} $ with equal mass $ m^i = 1/100 $ for 100 particles with varying powers $ q $ of degenerate penalization $ \rho(x)-\rho_0\sim |x|^q $. Minimizing configurations are obtained as steady-states of the gradient flow of the energy $ \mathsf{F}_{m^1,\dots,m^n} $
[1]

Annalisa Cesaroni, Matteo Novaga. The isoperimetric problem for nonlocal perimeters. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 425-440. doi: 10.3934/dcdss.2018023

[2]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059

[3]

Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1

[4]

Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17 (1) : 15-45. doi: 10.3934/nhm.2021022

[5]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[6]

Ihsan Topaloglu. On a nonlocal isoperimetric problem on the two-sphere. Communications on Pure and Applied Analysis, 2013, 12 (1) : 597-620. doi: 10.3934/cpaa.2013.12.597

[7]

Hartmut Schwetlick, Daniel C. Sutton, Johannes Zimmer. On the $\Gamma$-limit for a non-uniformly bounded sequence of two-phase metric functionals. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 411-426. doi: 10.3934/dcds.2015.35.411

[8]

Kelei Wang. The singular limit problem in a phase separation model with different diffusion rates $^*$. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 483-512. doi: 10.3934/dcds.2015.35.483

[9]

Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391

[10]

Lucia Scardia, Anja Schlömerkemper, Chiara Zanini. Towards uniformly $\Gamma$-equivalent theories for nonconvex discrete systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 661-686. doi: 10.3934/dcdsb.2012.17.661

[11]

James M. Scott, Tadele Mengesha. Self-Improving inequalities for bounded weak solutions to nonlocal double phase equations. Communications on Pure and Applied Analysis, 2022, 21 (1) : 183-212. doi: 10.3934/cpaa.2021174

[12]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[13]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[14]

Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021

[15]

Alain Miranville, Giulio Schimperna. Nonisothermal phase separation based on a microforce balance. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 753-768. doi: 10.3934/dcdsb.2005.5.753

[16]

Tatiana Odzijewicz. Generalized fractional isoperimetric problem of several variables. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2617-2629. doi: 10.3934/dcdsb.2014.19.2617

[17]

Helmut Abels, Yutaka Terasawa. Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1871-1881. doi: 10.3934/dcdss.2022117

[18]

Jun Wang, Qiuping Geng, Maochun Zhu. Existence of the normalized solutions to the nonlocal elliptic system with partial confinement. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2187-2201. doi: 10.3934/dcds.2019092

[19]

David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure and Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143

[20]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (221)
  • HTML views (202)
  • Cited by (0)

[Back to Top]