-
Previous Article
The weak maximum principle for second-order elliptic and parabolic conormal derivative problems
- CPAA Home
- This Issue
-
Next Article
On the Schrödinger-Debye system in compact Riemannian manifolds
Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions
1. | Department of Mathematics and Computer Science, VNUHCM-University of Science, 227 Nguyen Van Cu Str., Dist.5, Ho Chi Minh City, Vietnam |
2. | Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Vietnam |
3. | University of Khanh Hoa, 01 Nguyen Chanh Str., Nha Trang City, Vietnam |
4. | Department of Mathematics, University of Architecture of Ho Chi Minh City, 196 Pasteur Str., Dist. 3, Ho Chi Minh City, Vietnam |
This paper is devoted to the study of a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Based on the Faedo-Galerkin method and standard arguments of density corresponding to the regularity of initial conditions, we first establish two local existence theorems of weak solutions. By the construction of a suitable Lyapunov functional, we next prove a blow up result and a decay result of global solutions.
References:
[1] |
M. Bergounioux, N. T. Long and Alain P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar, Nonlinear Anal., 43 (2001), 547–561.
doi: 10.1016/S0362-546X(99)00218-7. |
[2] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and boundary memory source term, Nonlinear Anal., 38 (1999), 281–294.
doi: 10.1016/S0362-546X(98)00195-3. |
[3] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, On the existence and the uniform decay of a hyperbolic, Southeast Asian Bulletin of Mathematics, 24 (2000), 183–199.
doi: 10.1007/s100120070002. |
[4] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Applied Mathematics and Computation, 150 (2004), 439–465.
doi: 10.1016/S0096-3003(03)00284-4. |
[5] |
Fei Liang and Hongjun Gao, Global nonexistence of positive initial-energy solutions for coupled nonlinear wave equations with damping and source terms, Abstract and Applied Analysis, Vol. 2011, Art. ID 760209, 14 pages.
doi: 10.1155/2011/760209. |
[6] |
V. A. Khoa, L. T. P. Ngoc and N. T. Long, Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms, Evolution Equations & Control Theory, 8 (2019), 359–395. |
[7] |
V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. 1. Academic Press, NewYork, 1969. |
[8] |
C. Sideris and Yi Zhou, Almost global existence for 2-D incompressible isotropic elastodynamics, Trans. Amer. Math. Soc., 367 (2015), 8175–8197.
doi: 10.1090/tran/6294. |
[9] |
Zhen Lei, On 2D Viscoelasticity with Small Strain, Arch. Rational Mech. Anal., 198 (2010), 13-37.
doi: 10.1007/s00205-010-0346-2. |
[10] |
J. L. Lions, Quelques méthodes de ré solution des problèmes aux limites nonlinéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[11] |
W. Liu, G. Li and L. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, Journal of Function Spaces, Vol. 2014, Art. ID 284809, 21 pages.
doi: 10.1155/2014/284809. |
[12] |
N. T. Long and Alain P. N. Dinh, On the quasilinear wave equation: $u_tt-\Delta u+f(u, $ $u_{t}) = 0$ associated with a mixed nonhomogeneous condition, Nonlinear Anal., 19 (1992).
doi: 10.1016/0362-546X(92)90097-X. |
[13] |
N. T. Long and Alain P. N. Dinh, A semilinear wave equation associated with a linear differential equation with Cauchy data, Nonlinear Anal. TMA., 24 (1995), 1261–1279.
doi: 10.1016/0362-546X(94)00196-O. |
[14] |
N. T. Long and T. N. Diem, On the nonlinear wave equation $u_tt-u_xx = f(x, $ $t, \, u, $ $u_{x}, $ $u_{t})$ associated with the mixed homogeneous conditions, Nonlinear Anal. TMA., 29 (1997), 1217–1230.
doi: 10.1016/S0362-546X(97)87360-9. |
[15] |
N. T. Long, Alain P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar, J. Boundary Value Problems, 2005 (2005), 337–358.
doi: 10.1155/bvp.2005.337. |
[16] |
N. T. Long and L. T. P. Ngoc, On a nonlinear wave equation with boundary conditions of two-point type, J. Math. Anal. Appl., 385 (2012), 1070–1093.
doi: 10.1016/j.jmaa.2011.07.034. |
[17] |
S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58–66.
doi: 10.1002/mana.200310104. |
[18] |
Changxing Miao and Youbin Zhu, Global smooth solutions for a nonlinear system of wave equations, Nonlinear Anal., 67 (2007), 3136-3151.
doi: 10.1016/j.na.2006.10.006. |
[19] |
L. T. P. Ngoc and N. T. Long, Existence, blow-up and exponential decay estimates for a system of nonlinear wave equations with nonlinear boundary conditions, Mathematical Methods in the Applied Sciences, 37 (2014), 464–487.
doi: 10.1002/mma.2803. |
[20] |
L. T. P. Ngoc and N. T. Long, Existence and exponential decay for a nonlinear wave equation with a nonlocal boundary condition, Communications on Pure and Applied Analysis, 12 (2013), 2001–2029.
doi: 10.3934/cpaa.2013.12.2001. |
[21] |
L. T. P. Ngoc, C. H. Hoa and N. T. Long, Existence, blow-up, and exponential decay estimates for a system of semilinear wave equations associated with the helical flows of Maxwell fluid, Mathematical Methods in the Applied Sciences, 39 (2016), 2334–2357.
doi: 10.1002/mma.3643. |
[22] |
L. T. P. Ngoc, N. A. Triet, Alain P. N. Dinh and N. T. Long, Existence and exponential decay of solutions for a wave equation with integral nonlocal boundary conditions of memory type, Numerical Functional Analysis and Optimization, 38 (2017), 1173–1207.
doi: 10.1080/01630563.2017.1320672. |
[23] |
L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, Nonlinear Anal. TMA., 70 (2009), 3943–3965.
doi: 10.1016/j.na.2008.08.004. |
[24] |
M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electronic J. Differential Equations, 38 (2002), 1–17. |
[25] |
C. Sideris, Global behavior of solutions to nonlinear wave equations in three dimensions, Comm. P.D.E., 8 (1983), 1291–1323.
doi: 10.1080/03605308308820304. |
[26] |
C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math., 123 (1996), 323–342.
doi: 10.1007/s002220050030. |
[27] |
C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Annals of Math., 151 (2000), 849–874.
doi: 10.2307/121050. |
[28] |
L. X. Truong, L. T. P. Ngoc, Alain P. N. Dinh and N. T. Long, Existence, blow-up and exponential decay estimates for a nonlinear wave equation with boundary conditions of two-point type, Nonlinear Anal. TMA., 74 (2011), 6933–6949.
doi: 10.1016/j.na.2011.07.015. |
[29] |
Jieqiong Wu and Shengjia Li, Blow-up for coupled nonlinear wave equations with damping and source, Applied Mathematics Letters, 24 (2011), 1093-1098.
doi: 10.1016/j.aml.2011.01.030. |
[30] |
Zai-yun Zhang and Xiu-jin Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Computers and Mathematics with Applications, 59 (2010), 1003-1018.
doi: 10.1016/j.camwa.2009.09.008. |
show all references
References:
[1] |
M. Bergounioux, N. T. Long and Alain P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar, Nonlinear Anal., 43 (2001), 547–561.
doi: 10.1016/S0362-546X(99)00218-7. |
[2] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and boundary memory source term, Nonlinear Anal., 38 (1999), 281–294.
doi: 10.1016/S0362-546X(98)00195-3. |
[3] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, On the existence and the uniform decay of a hyperbolic, Southeast Asian Bulletin of Mathematics, 24 (2000), 183–199.
doi: 10.1007/s100120070002. |
[4] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Applied Mathematics and Computation, 150 (2004), 439–465.
doi: 10.1016/S0096-3003(03)00284-4. |
[5] |
Fei Liang and Hongjun Gao, Global nonexistence of positive initial-energy solutions for coupled nonlinear wave equations with damping and source terms, Abstract and Applied Analysis, Vol. 2011, Art. ID 760209, 14 pages.
doi: 10.1155/2011/760209. |
[6] |
V. A. Khoa, L. T. P. Ngoc and N. T. Long, Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms, Evolution Equations & Control Theory, 8 (2019), 359–395. |
[7] |
V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. 1. Academic Press, NewYork, 1969. |
[8] |
C. Sideris and Yi Zhou, Almost global existence for 2-D incompressible isotropic elastodynamics, Trans. Amer. Math. Soc., 367 (2015), 8175–8197.
doi: 10.1090/tran/6294. |
[9] |
Zhen Lei, On 2D Viscoelasticity with Small Strain, Arch. Rational Mech. Anal., 198 (2010), 13-37.
doi: 10.1007/s00205-010-0346-2. |
[10] |
J. L. Lions, Quelques méthodes de ré solution des problèmes aux limites nonlinéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[11] |
W. Liu, G. Li and L. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, Journal of Function Spaces, Vol. 2014, Art. ID 284809, 21 pages.
doi: 10.1155/2014/284809. |
[12] |
N. T. Long and Alain P. N. Dinh, On the quasilinear wave equation: $u_tt-\Delta u+f(u, $ $u_{t}) = 0$ associated with a mixed nonhomogeneous condition, Nonlinear Anal., 19 (1992).
doi: 10.1016/0362-546X(92)90097-X. |
[13] |
N. T. Long and Alain P. N. Dinh, A semilinear wave equation associated with a linear differential equation with Cauchy data, Nonlinear Anal. TMA., 24 (1995), 1261–1279.
doi: 10.1016/0362-546X(94)00196-O. |
[14] |
N. T. Long and T. N. Diem, On the nonlinear wave equation $u_tt-u_xx = f(x, $ $t, \, u, $ $u_{x}, $ $u_{t})$ associated with the mixed homogeneous conditions, Nonlinear Anal. TMA., 29 (1997), 1217–1230.
doi: 10.1016/S0362-546X(97)87360-9. |
[15] |
N. T. Long, Alain P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar, J. Boundary Value Problems, 2005 (2005), 337–358.
doi: 10.1155/bvp.2005.337. |
[16] |
N. T. Long and L. T. P. Ngoc, On a nonlinear wave equation with boundary conditions of two-point type, J. Math. Anal. Appl., 385 (2012), 1070–1093.
doi: 10.1016/j.jmaa.2011.07.034. |
[17] |
S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58–66.
doi: 10.1002/mana.200310104. |
[18] |
Changxing Miao and Youbin Zhu, Global smooth solutions for a nonlinear system of wave equations, Nonlinear Anal., 67 (2007), 3136-3151.
doi: 10.1016/j.na.2006.10.006. |
[19] |
L. T. P. Ngoc and N. T. Long, Existence, blow-up and exponential decay estimates for a system of nonlinear wave equations with nonlinear boundary conditions, Mathematical Methods in the Applied Sciences, 37 (2014), 464–487.
doi: 10.1002/mma.2803. |
[20] |
L. T. P. Ngoc and N. T. Long, Existence and exponential decay for a nonlinear wave equation with a nonlocal boundary condition, Communications on Pure and Applied Analysis, 12 (2013), 2001–2029.
doi: 10.3934/cpaa.2013.12.2001. |
[21] |
L. T. P. Ngoc, C. H. Hoa and N. T. Long, Existence, blow-up, and exponential decay estimates for a system of semilinear wave equations associated with the helical flows of Maxwell fluid, Mathematical Methods in the Applied Sciences, 39 (2016), 2334–2357.
doi: 10.1002/mma.3643. |
[22] |
L. T. P. Ngoc, N. A. Triet, Alain P. N. Dinh and N. T. Long, Existence and exponential decay of solutions for a wave equation with integral nonlocal boundary conditions of memory type, Numerical Functional Analysis and Optimization, 38 (2017), 1173–1207.
doi: 10.1080/01630563.2017.1320672. |
[23] |
L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, Nonlinear Anal. TMA., 70 (2009), 3943–3965.
doi: 10.1016/j.na.2008.08.004. |
[24] |
M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electronic J. Differential Equations, 38 (2002), 1–17. |
[25] |
C. Sideris, Global behavior of solutions to nonlinear wave equations in three dimensions, Comm. P.D.E., 8 (1983), 1291–1323.
doi: 10.1080/03605308308820304. |
[26] |
C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math., 123 (1996), 323–342.
doi: 10.1007/s002220050030. |
[27] |
C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Annals of Math., 151 (2000), 849–874.
doi: 10.2307/121050. |
[28] |
L. X. Truong, L. T. P. Ngoc, Alain P. N. Dinh and N. T. Long, Existence, blow-up and exponential decay estimates for a nonlinear wave equation with boundary conditions of two-point type, Nonlinear Anal. TMA., 74 (2011), 6933–6949.
doi: 10.1016/j.na.2011.07.015. |
[29] |
Jieqiong Wu and Shengjia Li, Blow-up for coupled nonlinear wave equations with damping and source, Applied Mathematics Letters, 24 (2011), 1093-1098.
doi: 10.1016/j.aml.2011.01.030. |
[30] |
Zai-yun Zhang and Xiu-jin Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Computers and Mathematics with Applications, 59 (2010), 1003-1018.
doi: 10.1016/j.camwa.2009.09.008. |
[1] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[2] |
Mengxian Lv, Jianghao Hao. General decay and blow-up for coupled Kirchhoff wave equations with dynamic boundary conditions. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021058 |
[3] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[4] |
Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020 |
[5] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[6] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure and Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[7] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[8] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[9] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[10] |
Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683 |
[11] |
Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370 |
[12] |
Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations and Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019 |
[13] |
Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1221-1232. doi: 10.3934/dcdss.2021093 |
[14] |
Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations and Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669 |
[15] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[16] |
Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677 |
[17] |
Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 |
[18] |
Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082 |
[19] |
Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121 |
[20] |
Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]