# American Institute of Mathematical Sciences

• Previous Article
On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations
• CPAA Home
• This Issue
• Next Article
Almost-periodic perturbations of non-hyperbolic equilibrium points via Pöschel-Rüssmann KAM method
January  2020, 19(1): 587-607. doi: 10.3934/cpaa.2020028

## Potential well and multiplicity of solutions for nonlinear Dirac equations

 1 School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex System, Ministry of Education, 100875 Beijing, China 2 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190 Beijing, China 3 Center for Applied Mathematics, Tianjin University, 300072 Tianjin, China

Received  September 2018 Revised  September 2018 Published  July 2019

In this paper we consider the semi-classical solutions of a massive Dirac equations in presence of a critical growth nonlinearity
 $-i\hbar \sum\limits_{k = 1}^{3}\alpha_k\partial_k w+a\beta w+V(x)w = f(|w|)w.$
Under a local condition imposed on the potential
 $V$
, we relate the number of solutions with the topology of the set where the potential attains its minimum. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.
Citation: Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028
##### References:
 [1] N. Ackermann, A nonlinear superposition principle and multibump solution of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 423-443.  doi: 10.1016/j.jfa.2005.11.010. [2] A. Ambrosetti, M. Badiale and S. Cignolani, Semi-classical states of nonlinear Shrödinger equations, Arch. Rational Mech. Anal., 140 (1997), 285-300.  doi: 10.1007/s002050050067. [3] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24. [4] A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159, (2001), 253–271. doi: 10.1007/s002050100152. [5] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302. [6] T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann., 338 (2007), 147-185.  doi: 10.1007/s00208-006-0071-1. [7] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114 (1991), 79-93.  doi: 10.1007/BF00375686. [8] V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations, 2 (1994), 29-48.  doi: 10.1007/BF01234314. [9] V. Benci, G. Cerami and D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems, Nonlinear Analysis, tribute in honor of G. Prodi, Quaderno Scuola Normale Sup. Pisa, (1991), 93–107. [10] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational Mech. Anal., 185 (2007), 185-200.  doi: 10.1007/s00205-006-0019-3. [11] J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 165 (2002), 295-316.  doi: 10.1007/s00205-002-0225-6. [12] G. Cerami and D. Passaseo, Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology, Nonlinear Anal. TMA, 18 (1992), 109-119.  doi: 10.1016/0362-546X(92)90089-W. [13] S. Cingolani and M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal., 10 (1997), 1-13.  doi: 10.12775/TMNA.1997.019. [14] S. Cingolani, L. Jeanjean and K. Tanaka, Multiplicity of positive solutions of nonlinear Schrödinger equations concentrating at a potential well, Calc. Var. Partial Differential Equations, 53 (2015), 413-439.  doi: 10.1007/s00526-014-0754-5. [15] S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differ. Equ., 160 (2000), 118-138.  doi: 10.1006/jdeq.1999.3662. [16] E. N. Dancer and J. Wei, On the effect of domain topology in a singular perturbation problem, Top. Methods Nonlinear Anal., 4 (1999), 347-368.  doi: 10.12775/TMNA.1998.016. [17] E. N. Dancer and S. Yan, A singularly perturbed elliptic problem in bounded domains with nontrivial topology, Adv. Differ. Equ., 4 (1999), 347–368. [18] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Springer, Berlin, 1990. [19] A. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633.  doi: 10.1016/j.jfa.2012.03.009. [20] M. Del Pino and P. Felmer, Local mountain passes for semilinear ellipitc problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950. [21] M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Vol. 15. No. 2. Elsevier Masson, 1998, 127–149. doi: 10.1016/S0294-1449(97)89296-7. [22] M. Del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32.  doi: 10.1007/s002080200327. [23] Y. H. Ding, Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., 7, World Scientific Publ., 2007. doi: 10.1142/9789812709639. [24] Y. H. Ding, Semi-classical ground states concentrating on the nonlinear potentical for a Dirac equation, J. Differ. Equ., 249 (2010), 1015-1034.  doi: 10.1016/j.jde.2010.03.022. [25] Y. H. Ding, C. Lee and B. Ruf, On semiclassical states of a nonlinear Dirac equation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013), 765-790.  doi: 10.1017/S0308210511001752. [26] Y. H. Ding and B. Ruf, Existence and concentration of semi-classical solutions for Dirac equations with critical nonlinearities, SIAM Journal on Mathematical Analysis, 44 (2012), 3755-3785.  doi: 10.1137/110850670. [27] Y. H. Ding and T. Xu, Localized concentration of semiclassical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.  doi: 10.1007/s00205-014-0811-4. [28] Y. H. Ding and T. Xu, Contrating patterns of reaction-diffusion systems: A variational approach, Trans. Amer. Math. Soc., 369 (2017), 97-138.  doi: 10.1090/tran/6626. [29] J. Esteban and Eric Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys., 171 (1995), 323–350. [30] R. Finkelstein, R. LeLevier and M. Ruderman, Nonlinear spinor fields, Physical Review, 83 (1951), 326–332. [31] R. Finkelstein, C. Fronsdal and P. Kaus, Nonlinear spinor field, Physical Review, 103 (1956), 1571–1579. [32] G. Fournier and M. Willem, Relative category and the calculus of variations, in Variational Methods, H. Berestycki et al. Birkhäuser Boston, 4 (1990), 95–104. [33] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.  doi: 10.1016/0022-1236(86)90096-0. [34] D. D. Ivanenko, Notes to the theory of interaction via particles, Zh.Éksp. Teor. Fiz., 8 (1938), 260–266. [35] P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, Part Ⅱ, AIP Anal. non linéaire, 1, 223–283. [36] Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations, 13 (1988), 1499-1519.  doi: 10.1080/03605308808820585. [37] Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131 (1990), 223–253. [38] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew Math Phys, 43 (1992), 270-291.  doi: 10.1007/BF00946631. [39] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013. [40] Z. Q. Wang and X. Zhang, An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations, Calc. Var. Partial Differential Equations, 57 (2018), Art. 56, 30 pp. doi: 10.1007/s00526-018-1319-9. [41] M. Willem, Minimax Theorems, Birkhäuser, 1996. doi: 10.1007/978-1-4612-4146-1.

show all references

##### References:
 [1] N. Ackermann, A nonlinear superposition principle and multibump solution of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 423-443.  doi: 10.1016/j.jfa.2005.11.010. [2] A. Ambrosetti, M. Badiale and S. Cignolani, Semi-classical states of nonlinear Shrödinger equations, Arch. Rational Mech. Anal., 140 (1997), 285-300.  doi: 10.1007/s002050050067. [3] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24. [4] A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159, (2001), 253–271. doi: 10.1007/s002050100152. [5] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302. [6] T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann., 338 (2007), 147-185.  doi: 10.1007/s00208-006-0071-1. [7] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114 (1991), 79-93.  doi: 10.1007/BF00375686. [8] V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations, 2 (1994), 29-48.  doi: 10.1007/BF01234314. [9] V. Benci, G. Cerami and D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems, Nonlinear Analysis, tribute in honor of G. Prodi, Quaderno Scuola Normale Sup. Pisa, (1991), 93–107. [10] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational Mech. Anal., 185 (2007), 185-200.  doi: 10.1007/s00205-006-0019-3. [11] J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 165 (2002), 295-316.  doi: 10.1007/s00205-002-0225-6. [12] G. Cerami and D. Passaseo, Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology, Nonlinear Anal. TMA, 18 (1992), 109-119.  doi: 10.1016/0362-546X(92)90089-W. [13] S. Cingolani and M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal., 10 (1997), 1-13.  doi: 10.12775/TMNA.1997.019. [14] S. Cingolani, L. Jeanjean and K. Tanaka, Multiplicity of positive solutions of nonlinear Schrödinger equations concentrating at a potential well, Calc. Var. Partial Differential Equations, 53 (2015), 413-439.  doi: 10.1007/s00526-014-0754-5. [15] S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differ. Equ., 160 (2000), 118-138.  doi: 10.1006/jdeq.1999.3662. [16] E. N. Dancer and J. Wei, On the effect of domain topology in a singular perturbation problem, Top. Methods Nonlinear Anal., 4 (1999), 347-368.  doi: 10.12775/TMNA.1998.016. [17] E. N. Dancer and S. Yan, A singularly perturbed elliptic problem in bounded domains with nontrivial topology, Adv. Differ. Equ., 4 (1999), 347–368. [18] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Springer, Berlin, 1990. [19] A. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633.  doi: 10.1016/j.jfa.2012.03.009. [20] M. Del Pino and P. Felmer, Local mountain passes for semilinear ellipitc problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950. [21] M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Vol. 15. No. 2. Elsevier Masson, 1998, 127–149. doi: 10.1016/S0294-1449(97)89296-7. [22] M. Del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32.  doi: 10.1007/s002080200327. [23] Y. H. Ding, Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., 7, World Scientific Publ., 2007. doi: 10.1142/9789812709639. [24] Y. H. Ding, Semi-classical ground states concentrating on the nonlinear potentical for a Dirac equation, J. Differ. Equ., 249 (2010), 1015-1034.  doi: 10.1016/j.jde.2010.03.022. [25] Y. H. Ding, C. Lee and B. Ruf, On semiclassical states of a nonlinear Dirac equation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013), 765-790.  doi: 10.1017/S0308210511001752. [26] Y. H. Ding and B. Ruf, Existence and concentration of semi-classical solutions for Dirac equations with critical nonlinearities, SIAM Journal on Mathematical Analysis, 44 (2012), 3755-3785.  doi: 10.1137/110850670. [27] Y. H. Ding and T. Xu, Localized concentration of semiclassical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.  doi: 10.1007/s00205-014-0811-4. [28] Y. H. Ding and T. Xu, Contrating patterns of reaction-diffusion systems: A variational approach, Trans. Amer. Math. Soc., 369 (2017), 97-138.  doi: 10.1090/tran/6626. [29] J. Esteban and Eric Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys., 171 (1995), 323–350. [30] R. Finkelstein, R. LeLevier and M. Ruderman, Nonlinear spinor fields, Physical Review, 83 (1951), 326–332. [31] R. Finkelstein, C. Fronsdal and P. Kaus, Nonlinear spinor field, Physical Review, 103 (1956), 1571–1579. [32] G. Fournier and M. Willem, Relative category and the calculus of variations, in Variational Methods, H. Berestycki et al. Birkhäuser Boston, 4 (1990), 95–104. [33] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.  doi: 10.1016/0022-1236(86)90096-0. [34] D. D. Ivanenko, Notes to the theory of interaction via particles, Zh.Éksp. Teor. Fiz., 8 (1938), 260–266. [35] P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, Part Ⅱ, AIP Anal. non linéaire, 1, 223–283. [36] Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations, 13 (1988), 1499-1519.  doi: 10.1080/03605308808820585. [37] Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131 (1990), 223–253. [38] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew Math Phys, 43 (1992), 270-291.  doi: 10.1007/BF00946631. [39] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013. [40] Z. Q. Wang and X. Zhang, An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations, Calc. Var. Partial Differential Equations, 57 (2018), Art. 56, 30 pp. doi: 10.1007/s00526-018-1319-9. [41] M. Willem, Minimax Theorems, Birkhäuser, 1996. doi: 10.1007/978-1-4612-4146-1.
 [1] Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $n$. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4105-4123. doi: 10.3934/dcds.2021030 [2] Xiaoming An, Xian Yang. Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1649-1672. doi: 10.3934/cpaa.2022038 [3] Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic and Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893 [4] Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059 [5] Lihui Chai, Shi Jin, Qin Li. Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic and Related Models, 2013, 6 (3) : 505-532. doi: 10.3934/krm.2013.6.505 [6] Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 [7] Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238 [8] Jean Dolbeault, Robert Stańczy. Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi--Dirac statistics. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 139-154. doi: 10.3934/dcds.2015.35.139 [9] Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067 [10] Cesare Tronci. Momentum maps for mixed states in quantum and classical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 639-656. doi: 10.3934/jgm.2019032 [11] Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381 [12] Masataka Shibata. Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4107-4126. doi: 10.3934/cpaa.2021147 [13] Marek Galewski, Shapour Heidarkhani, Amjad Salari. Multiplicity results for discrete anisotropic equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 203-218. doi: 10.3934/dcdsb.2018014 [14] Xiaoyan Lin, Xianhua Tang. Solutions of nonlinear periodic Dirac equations with periodic potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2051-2061. doi: 10.3934/dcdss.2019132 [15] Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117 [16] Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429 [17] Norimichi Hirano, Wen Se Kim. Multiplicity and stability result for semilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 271-280. doi: 10.3934/dcds.1996.2.271 [18] Norihisa Ikoma. Multiplicity of radial and nonradial solutions to equations with fractional operators. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3501-3530. doi: 10.3934/cpaa.2020153 [19] Rakesh Arora. Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2253-2269. doi: 10.3934/cpaa.2022056 [20] Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081

2020 Impact Factor: 1.916

## Metrics

• HTML views (243)
• Cited by (0)

• on AIMS