February  2020, 19(2): 747-769. doi: 10.3934/cpaa.2020035

Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain

1. 

Universidad Privada del Norte, Campus Breña, Av. Tingo María 1122, Lima, Peru

2. 

Institute of Mathematics, Federal University of Rio de Janeiro, P.O. Box 68530, CEP 21941-909, Rio de Janeiro, RJ, Brazil

* Corresponding author

Received  October 2018 Revised  July 2019 Published  October 2019

In this paper we are concerned with a Boussinesq system for small-amplitude long waves arising in nonlinear dispersive media. Considerations will be given for the global well-posedness and the time decay rates of solutions when the model is posed on a periodic domain and a general class of damping operator acts in each equation. By means of spectral analysis and Fourier expansion, we prove that the solutions of the linearized system decay uniformly or not to zero, depending on the parameters of the damping operators. In the uniform decay case, the result is extended for the full system.

Citation: George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain. Communications on Pure and Applied Analysis, 2020, 19 (2) : 747-769. doi: 10.3934/cpaa.2020035
References:
[1]

D. K. Arrowsmith and C. M. Place, Dynamical Systems: Differential Equations, Maps and Chaotic Behaviour, Chapman and Hall, London, 1992. doi: 10.1007/978-94-011-2388-4.

[2]

G. J. Bautista and A. F. Pazoto, Large-time red behavior of a linear Boussinesq system for the water waves, J. Dyn. Diff. Equ., 31 (2019), 959-978.  doi: 10.1007/s10884-018-9689-4.

[3]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for smallamplitude long waves in nonlinear dispersive media. Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.

[4]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅱ: Nonlinear theory, Nonlinearity, 17 (2004), 925-9052.  doi: 10.1088/0951-7715/17/3/010.

[5]

J. L. BonaG. W. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Roy. Soc. London Ser. A, 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.

[6]

J. L. Bona and J. Wu, Zero-dissipation limit for nonlinear waves, M2AN Math. Model. Numer. Anal., 34 (2000), 275-301.  doi: 10.1051/m2an:2000141.

[7]

J. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, Comptes Rendus de l'Académie de Sciences, 72 (1871), 755-759. 

[8]

R. A. Capistrano-Filho, A. F. Pazoto and L. Rosier, Control of a Boussinesq system of KdV-KdV type on a bounded interval, ESAIM Control Optim. Calc. Var., DOI: https://doi.org/10.1051/cocv/2018036.

[9]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13, The Clarendon Press, Oxford University Press, New York, 1998.

[10]

J.-P. ChehabP. Garnier and Y. Mammeri, Long-time behavior of solutions of a BBM equation with generalized damping, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1897-1915.  doi: 10.3934/dcdsb.2015.20.1897.

[11]

M. Chen and O. Goubet, Long-time asymptotic behavior of dissipative Boussinesq systems, Discrete Contin. Dyn. Syst., 17 (2007), 509-528.  doi: 10.3934/dcdss.2009.2.37.

[12]

W. Littman and L. Markus, Some recent results on control and stabilization of flexible structures, Proc. COMCON on Stabilization of Flexible Structures (Montpellier, France), 1987, 151–161.

[13]

S. MicuJ. H. OrtegaL. Rosier and B.-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst., 24 (2009), 273-313.  doi: 10.3934/dcds.2009.24.273.

[14]

S. Micu and A. F. Pazoto, Stabilization of a Boussinesq system with localized damping, J. Anal. Math., 137 (2019), 291-337.  doi: 10.1007/s11854-018-0074-3.

[15]

S. Micu and A. F. Pazoto, Stabilization of a Boussinesq system with generalized damping, Systems Control Lett., 105 (2017), 62-69.  doi: 10.1016/j.sysconle.2017.04.012.

[16]

A. F. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KdV-KdV type, Systems Control Lett., 57 (2008), 595-601.  doi: 10.1016/j.sysconle.2007.12.009.

[17]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, New York, 1987.

show all references

References:
[1]

D. K. Arrowsmith and C. M. Place, Dynamical Systems: Differential Equations, Maps and Chaotic Behaviour, Chapman and Hall, London, 1992. doi: 10.1007/978-94-011-2388-4.

[2]

G. J. Bautista and A. F. Pazoto, Large-time red behavior of a linear Boussinesq system for the water waves, J. Dyn. Diff. Equ., 31 (2019), 959-978.  doi: 10.1007/s10884-018-9689-4.

[3]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for smallamplitude long waves in nonlinear dispersive media. Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.

[4]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅱ: Nonlinear theory, Nonlinearity, 17 (2004), 925-9052.  doi: 10.1088/0951-7715/17/3/010.

[5]

J. L. BonaG. W. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Roy. Soc. London Ser. A, 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.

[6]

J. L. Bona and J. Wu, Zero-dissipation limit for nonlinear waves, M2AN Math. Model. Numer. Anal., 34 (2000), 275-301.  doi: 10.1051/m2an:2000141.

[7]

J. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, Comptes Rendus de l'Académie de Sciences, 72 (1871), 755-759. 

[8]

R. A. Capistrano-Filho, A. F. Pazoto and L. Rosier, Control of a Boussinesq system of KdV-KdV type on a bounded interval, ESAIM Control Optim. Calc. Var., DOI: https://doi.org/10.1051/cocv/2018036.

[9]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13, The Clarendon Press, Oxford University Press, New York, 1998.

[10]

J.-P. ChehabP. Garnier and Y. Mammeri, Long-time behavior of solutions of a BBM equation with generalized damping, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1897-1915.  doi: 10.3934/dcdsb.2015.20.1897.

[11]

M. Chen and O. Goubet, Long-time asymptotic behavior of dissipative Boussinesq systems, Discrete Contin. Dyn. Syst., 17 (2007), 509-528.  doi: 10.3934/dcdss.2009.2.37.

[12]

W. Littman and L. Markus, Some recent results on control and stabilization of flexible structures, Proc. COMCON on Stabilization of Flexible Structures (Montpellier, France), 1987, 151–161.

[13]

S. MicuJ. H. OrtegaL. Rosier and B.-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst., 24 (2009), 273-313.  doi: 10.3934/dcds.2009.24.273.

[14]

S. Micu and A. F. Pazoto, Stabilization of a Boussinesq system with localized damping, J. Anal. Math., 137 (2019), 291-337.  doi: 10.1007/s11854-018-0074-3.

[15]

S. Micu and A. F. Pazoto, Stabilization of a Boussinesq system with generalized damping, Systems Control Lett., 105 (2017), 62-69.  doi: 10.1016/j.sysconle.2017.04.012.

[16]

A. F. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KdV-KdV type, Systems Control Lett., 57 (2008), 595-601.  doi: 10.1016/j.sysconle.2007.12.009.

[17]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, New York, 1987.

[1]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[2]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[3]

Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations and Control Theory, 2021, 10 (2) : 249-258. doi: 10.3934/eect.2020064

[4]

Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028

[5]

M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121

[6]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[7]

Zhong-Jie Han, Zhuangyi Liu, Jing Wang. Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1455-1467. doi: 10.3934/dcdss.2022031

[8]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[9]

Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117

[10]

Santiago Cano-Casanova. Decay rate at infinity of the positive solutions of a generalized class of $T$homas-Fermi equations. Conference Publications, 2011, 2011 (Special) : 240-249. doi: 10.3934/proc.2011.2011.240

[11]

Shuai Liu, Yuzhu Wang. Optimal time-decay rate of global classical solutions to the generalized compressible Oldroyd-B model. Evolution Equations and Control Theory, 2022, 11 (4) : 1201-1227. doi: 10.3934/eect.2021041

[12]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[13]

Mohammad Akil, Haidar Badawi. The influence of the physical coefficients of a Bresse system with one singular local viscous damping in the longitudinal displacement on its stabilization. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022004

[14]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations and Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[15]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations and Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[16]

Shengfu Deng. Generalized multi-hump wave solutions of Kdv-Kdv system of Boussinesq equations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3671-3716. doi: 10.3934/dcds.2019150

[17]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic and Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[18]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6057-6068. doi: 10.3934/dcdsb.2021002

[19]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[20]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (249)
  • HTML views (96)
  • Cited by (0)

Other articles
by authors

[Back to Top]