• Previous Article
    A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data
  • CPAA Home
  • This Issue
  • Next Article
    Pullback dynamics of a non-autonomous mixture problem in one dimensional solids with nonlinear damping
February  2020, 19(2): 811-834. doi: 10.3934/cpaa.2020038

Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise

1. 

School of Mathematics, South China University of Technology, Guangzhou 510640, China

2. 

College of Science, National University of Defense Technology, Changsha 410073, China

* Corresponding author

Received  November 2018 Revised  June 2019 Published  October 2019

The fBm-driving rough stochastic lattice dynamical system with a general diffusion term is investigated. First, an area element in space of tensor is desired to define the rough path integral using the Chen-equality and fractional calculus. Under certain conditions, the considered equation is proved to possess a unique local mild path-area solution.

Citation: Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure and Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038
References:
[1]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics and Dynamics, 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.

[2]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internal Journal of Bifurcation and Chaos, 11 (2001) 143–153. doi: 10.1142/S021812740100203.

[3]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Physica D: Nonlinear Phenomena, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[4]

H. BessaihM. J. Garrido-AtienzaX. Han and B. Schmalfuss, Stochastic lattice dynamical systems with fractional noise, SIAM Journal on Mathematical Analysis, 49 (2017), 1495-1518.  doi: 10.1137/16M1085504.

[5]

T. CaraballoX. HanB. Schmalfuss and J. Valero, Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise, Nonlinear Analysis-theory Methods & Applications, 130 (2016), 255-278.  doi: 10.1016/j.na.2015.09.025.

[6]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Frontiers of Mathematics in China, 3 (2008), 317-335.  doi: 10.1007/s11464-008-0028-7.

[7]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, Journal of Differential Equations and Applications, 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.

[8]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, Journal of Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.

[9]

B. Chen, Some pinching and classification theorems for minimal submanifolds, Archiv der Mathematik, 60 (1993), 568-578.  doi: 10.1007/BF01236084.

[10]

Y. ChenH. GaoM. J. Garrido-Atienza and B. Schmalfuss, Pathwise solutions of SPDEs driven by hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete and Continuous Dynamical Systems, 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.

[11]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems-I, IEEE Transactions on Circuits and Systems, 42 (1995), 746-751.  doi: 10.1109/81.473583.

[12]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, New York, 2003.

[13]

M. Garrido-Atienza, K. Lu and B. Schmalfuss, Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3, 1/2]$, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), pp. 2553–2581. doi: 10.3934/dcdsb.2015.20.2553.

[14]

M. J. Garrido-AtienzaK. Lu and B. Schmalfuss, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters $H\in (1/3, 1/2]$, SIAM Journal on Applied Dynamical Systems, 15 (2016), 625-654.  doi: 10.1137/15M1030303.

[15]

M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Lévy-areas of Ornstein-Uhlenbeck processes in Hilbert-spaces, in Continuous and Distributed Systems II: Theory and Applications (eds. V.A. Sadovnichiy and M.Z. Zgurovsky) doi: 10.1007/978-3-319-19075-4_10.

[16]

M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Pathwise solutions to stochastic partial differential equations driven by fractional Brownian motions with Hurst parameters in $(1/3, 1/2]$, preprint, arXiv: 1205.6735v3.

[17]

M. J. Garrido-AtienzaA. Neuenkirch and B. Schmalfus, Asymptotical stability of differential equations driven by Hölder continuous paths, Journal of Dynamics and Differential Equations, 30 (2018), 1-19.  doi: 10.1007/s10884-017-9574-6.

[18]

M. J. Garrido-Atienza and B. Schmalfuß, Ergodicity of the infinite dimensional fractional Brownian motion, Journal of Dynamics and Differential Equations, 23 (2011), pp. 671–681. doi: 10.1007/s10884-011-9222-5.

[19]

A. Gu, Random attractors of stochastic lattice dynamical systems driven by fractional Brownian motions, International Journal of Bifurcation and Chaos, 23 (2013), 1350041. doi: 10.1142/S0218127413500417.

[20]

A. Gu and Y. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3929-3937.  doi: 10.1016/j.cnsns.2014.04.005.

[21]

A. GuC. Zeng and Y. Li, Synchronization of systems with fractional environmental noises on finite lattice, Fractional Calculus and Applied Analysis, 18 (2015), 891-910.  doi: 10.1515/fca-2015-0054.

[22]

X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, Journal of Mathematical Analysis and Applications, 376 (2011), 481-493.  doi: 10.1016/j.jmaa.2010.11.032.

[23]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, Journal of Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[24]

Y. Hu and D. Nualart, Rough path analysis via fractional calculus, Transactions of the American Mathematical Society, 361 (2009), 2689-2718.  doi: 10.1090/S0002-9947-08-04631-X.

[25]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D: Nonlinear Phenomena, 233 (2007), 83-94.  doi: 10.1016/j.physd.2007.06.008.

[26]

Y. Lv and J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equations, Physica D: Nonlinear Phenomena, 221 (2006), 157-169.  doi: 10.1016/j.physd.2006.07.02.

[27]

Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems, Chaos, Solitons & Fractals, 27 (2006), 1080-1090.  doi: 10.1016/j.chaos.2005.04.089.

[28]

J. Mallet-Paret and S.-N. Chow, Pattern formation and spatial chaos in lattice dynamical systems-II, IEEE Transactions on Circuits and Systems, 42 (1995), 752-756.  doi: 10.1109/81.473583.

[29]

S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

[30]

B. Wang, Dynamics of systems on infinite lattices, Journal of Differential Equations, 221 (2006), 224-245.  doi: 10.1016/j.jde.2005.01.003.

[31]

X. WangS. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010), 483-494.  doi: 10.1016/j.na.2009.06.094.

[32]

Y. WangJ. Xu and P. E. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlinear Analysis-Theory Methods & Applications, 135 (2016), 205-222.  doi: 10.1016/j.na.2016.01.020.

[33]

S. Zhou, Attractors for second order lattice dynamical systems, Journal of Differential Equations, 179 (2002), 606-624.  doi: 10.1006/jdeq.2001.4032.

[34]

S. Zhou, Attractors and approximations for lattice dynamical systems, Journal of Differential Equations, 200 (2004), 342-268.  doi: 10.1016/j.jde.2004.02.005.

[35]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, Journal of Differential Equations, 224 (2006), 172-204.  doi: 10.1016/j.jde.2005.06.024.

show all references

References:
[1]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics and Dynamics, 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.

[2]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internal Journal of Bifurcation and Chaos, 11 (2001) 143–153. doi: 10.1142/S021812740100203.

[3]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Physica D: Nonlinear Phenomena, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[4]

H. BessaihM. J. Garrido-AtienzaX. Han and B. Schmalfuss, Stochastic lattice dynamical systems with fractional noise, SIAM Journal on Mathematical Analysis, 49 (2017), 1495-1518.  doi: 10.1137/16M1085504.

[5]

T. CaraballoX. HanB. Schmalfuss and J. Valero, Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise, Nonlinear Analysis-theory Methods & Applications, 130 (2016), 255-278.  doi: 10.1016/j.na.2015.09.025.

[6]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Frontiers of Mathematics in China, 3 (2008), 317-335.  doi: 10.1007/s11464-008-0028-7.

[7]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, Journal of Differential Equations and Applications, 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.

[8]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, Journal of Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.

[9]

B. Chen, Some pinching and classification theorems for minimal submanifolds, Archiv der Mathematik, 60 (1993), 568-578.  doi: 10.1007/BF01236084.

[10]

Y. ChenH. GaoM. J. Garrido-Atienza and B. Schmalfuss, Pathwise solutions of SPDEs driven by hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete and Continuous Dynamical Systems, 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.

[11]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems-I, IEEE Transactions on Circuits and Systems, 42 (1995), 746-751.  doi: 10.1109/81.473583.

[12]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, New York, 2003.

[13]

M. Garrido-Atienza, K. Lu and B. Schmalfuss, Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3, 1/2]$, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), pp. 2553–2581. doi: 10.3934/dcdsb.2015.20.2553.

[14]

M. J. Garrido-AtienzaK. Lu and B. Schmalfuss, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters $H\in (1/3, 1/2]$, SIAM Journal on Applied Dynamical Systems, 15 (2016), 625-654.  doi: 10.1137/15M1030303.

[15]

M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Lévy-areas of Ornstein-Uhlenbeck processes in Hilbert-spaces, in Continuous and Distributed Systems II: Theory and Applications (eds. V.A. Sadovnichiy and M.Z. Zgurovsky) doi: 10.1007/978-3-319-19075-4_10.

[16]

M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Pathwise solutions to stochastic partial differential equations driven by fractional Brownian motions with Hurst parameters in $(1/3, 1/2]$, preprint, arXiv: 1205.6735v3.

[17]

M. J. Garrido-AtienzaA. Neuenkirch and B. Schmalfus, Asymptotical stability of differential equations driven by Hölder continuous paths, Journal of Dynamics and Differential Equations, 30 (2018), 1-19.  doi: 10.1007/s10884-017-9574-6.

[18]

M. J. Garrido-Atienza and B. Schmalfuß, Ergodicity of the infinite dimensional fractional Brownian motion, Journal of Dynamics and Differential Equations, 23 (2011), pp. 671–681. doi: 10.1007/s10884-011-9222-5.

[19]

A. Gu, Random attractors of stochastic lattice dynamical systems driven by fractional Brownian motions, International Journal of Bifurcation and Chaos, 23 (2013), 1350041. doi: 10.1142/S0218127413500417.

[20]

A. Gu and Y. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3929-3937.  doi: 10.1016/j.cnsns.2014.04.005.

[21]

A. GuC. Zeng and Y. Li, Synchronization of systems with fractional environmental noises on finite lattice, Fractional Calculus and Applied Analysis, 18 (2015), 891-910.  doi: 10.1515/fca-2015-0054.

[22]

X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, Journal of Mathematical Analysis and Applications, 376 (2011), 481-493.  doi: 10.1016/j.jmaa.2010.11.032.

[23]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, Journal of Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[24]

Y. Hu and D. Nualart, Rough path analysis via fractional calculus, Transactions of the American Mathematical Society, 361 (2009), 2689-2718.  doi: 10.1090/S0002-9947-08-04631-X.

[25]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D: Nonlinear Phenomena, 233 (2007), 83-94.  doi: 10.1016/j.physd.2007.06.008.

[26]

Y. Lv and J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equations, Physica D: Nonlinear Phenomena, 221 (2006), 157-169.  doi: 10.1016/j.physd.2006.07.02.

[27]

Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems, Chaos, Solitons & Fractals, 27 (2006), 1080-1090.  doi: 10.1016/j.chaos.2005.04.089.

[28]

J. Mallet-Paret and S.-N. Chow, Pattern formation and spatial chaos in lattice dynamical systems-II, IEEE Transactions on Circuits and Systems, 42 (1995), 752-756.  doi: 10.1109/81.473583.

[29]

S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

[30]

B. Wang, Dynamics of systems on infinite lattices, Journal of Differential Equations, 221 (2006), 224-245.  doi: 10.1016/j.jde.2005.01.003.

[31]

X. WangS. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010), 483-494.  doi: 10.1016/j.na.2009.06.094.

[32]

Y. WangJ. Xu and P. E. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlinear Analysis-Theory Methods & Applications, 135 (2016), 205-222.  doi: 10.1016/j.na.2016.01.020.

[33]

S. Zhou, Attractors for second order lattice dynamical systems, Journal of Differential Equations, 179 (2002), 606-624.  doi: 10.1006/jdeq.2001.4032.

[34]

S. Zhou, Attractors and approximations for lattice dynamical systems, Journal of Differential Equations, 200 (2004), 342-268.  doi: 10.1016/j.jde.2004.02.005.

[35]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, Journal of Differential Equations, 224 (2006), 172-204.  doi: 10.1016/j.jde.2005.06.024.

[1]

Yiju Chen, Xiaohu Wang, Kenan Wu. Wong-Zakai approximations and pathwise dynamics of stochastic fractional lattice systems. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022059

[2]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[3]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[4]

Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197

[5]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[6]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2553-2581. doi: 10.3934/dcdsb.2015.20.2553

[7]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[8]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[9]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[10]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[11]

Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

[12]

Xin Meng, Cunchen Gao, Baoping Jiang, Hamid Reza Karimi. Observer-based SMC for stochastic systems with disturbance driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022027

[13]

Yousef Alnafisah, Hamdy M. Ahmed. Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion. Evolution Equations and Control Theory, 2022, 11 (3) : 925-937. doi: 10.3934/eect.2021031

[14]

Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $. Evolution Equations and Control Theory, 2021, 10 (4) : 921-935. doi: 10.3934/eect.2020096

[15]

Fuchen Zhang, Xiaofeng Liao, Chunlai Mu, Guangyun Zhang, Yi-An Chen. On global boundedness of the Chen system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1673-1681. doi: 10.3934/dcdsb.2017080

[16]

Xu Zhang, Guanrong Chen. Boundedness of the complex Chen system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021291

[17]

Hassan Allouba. Brownian-time Brownian motion SIEs on $\mathbb{R}_{+}$ × $\mathbb{R}^d$: Ultra regular direct and lattice-limits solutions and fourth order SPDEs links. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 413-463. doi: 10.3934/dcds.2013.33.413

[18]

Stefan Koch, Andreas Neuenkirch. The Mandelbrot-van Ness fractional Brownian motion is infinitely differentiable with respect to its Hurst parameter. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3865-3880. doi: 10.3934/dcdsb.2018334

[19]

S. Kanagawa, K. Inoue, A. Arimoto, Y. Saisho. Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method. Conference Publications, 2005, 2005 (Special) : 463-475. doi: 10.3934/proc.2005.2005.463

[20]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (261)
  • HTML views (97)
  • Cited by (1)

[Back to Top]