\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise

  • * Corresponding author

    * Corresponding author
Abstract Full Text(HTML) Related Papers Cited by
  • The fBm-driving rough stochastic lattice dynamical system with a general diffusion term is investigated. First, an area element in space of tensor is desired to define the rough path integral using the Chen-equality and fractional calculus. Under certain conditions, the considered equation is proved to possess a unique local mild path-area solution.

    Mathematics Subject Classification: Primary: 60H15, 60G22; Secondary: 37K60, 37HXX.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics and Dynamics, 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.
    [2] P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internal Journal of Bifurcation and Chaos, 11 (2001) 143–153. doi: 10.1142/S021812740100203.
    [3] P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Physica D: Nonlinear Phenomena, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.
    [4] H. BessaihM. J. Garrido-AtienzaX. Han and B. Schmalfuss, Stochastic lattice dynamical systems with fractional noise, SIAM Journal on Mathematical Analysis, 49 (2017), 1495-1518.  doi: 10.1137/16M1085504.
    [5] T. CaraballoX. HanB. Schmalfuss and J. Valero, Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise, Nonlinear Analysis-theory Methods & Applications, 130 (2016), 255-278.  doi: 10.1016/j.na.2015.09.025.
    [6] T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Frontiers of Mathematics in China, 3 (2008), 317-335.  doi: 10.1007/s11464-008-0028-7.
    [7] T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, Journal of Differential Equations and Applications, 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.
    [8] T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, Journal of Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.
    [9] B. Chen, Some pinching and classification theorems for minimal submanifolds, Archiv der Mathematik, 60 (1993), 568-578.  doi: 10.1007/BF01236084.
    [10] Y. ChenH. GaoM. J. Garrido-Atienza and B. Schmalfuss, Pathwise solutions of SPDEs driven by hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete and Continuous Dynamical Systems, 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.
    [11] S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems-I, IEEE Transactions on Circuits and Systems, 42 (1995), 746-751.  doi: 10.1109/81.473583.
    [12] S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, New York, 2003.
    [13] M. Garrido-Atienza, K. Lu and B. Schmalfuss, Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3, 1/2]$, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), pp. 2553–2581. doi: 10.3934/dcdsb.2015.20.2553.
    [14] M. J. Garrido-AtienzaK. Lu and B. Schmalfuss, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters $H\in (1/3, 1/2]$, SIAM Journal on Applied Dynamical Systems, 15 (2016), 625-654.  doi: 10.1137/15M1030303.
    [15] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Lévy-areas of Ornstein-Uhlenbeck processes in Hilbert-spaces, in Continuous and Distributed Systems II: Theory and Applications (eds. V.A. Sadovnichiy and M.Z. Zgurovsky) doi: 10.1007/978-3-319-19075-4_10.
    [16] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Pathwise solutions to stochastic partial differential equations driven by fractional Brownian motions with Hurst parameters in $(1/3, 1/2]$, preprint, arXiv: 1205.6735v3.
    [17] M. J. Garrido-AtienzaA. Neuenkirch and B. Schmalfus, Asymptotical stability of differential equations driven by Hölder continuous paths, Journal of Dynamics and Differential Equations, 30 (2018), 1-19.  doi: 10.1007/s10884-017-9574-6.
    [18] M. J. Garrido-Atienza and B. Schmalfuß, Ergodicity of the infinite dimensional fractional Brownian motion, Journal of Dynamics and Differential Equations, 23 (2011), pp. 671–681. doi: 10.1007/s10884-011-9222-5.
    [19] A. Gu, Random attractors of stochastic lattice dynamical systems driven by fractional Brownian motions, International Journal of Bifurcation and Chaos, 23 (2013), 1350041. doi: 10.1142/S0218127413500417.
    [20] A. Gu and Y. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3929-3937.  doi: 10.1016/j.cnsns.2014.04.005.
    [21] A. GuC. Zeng and Y. Li, Synchronization of systems with fractional environmental noises on finite lattice, Fractional Calculus and Applied Analysis, 18 (2015), 891-910.  doi: 10.1515/fca-2015-0054.
    [22] X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, Journal of Mathematical Analysis and Applications, 376 (2011), 481-493.  doi: 10.1016/j.jmaa.2010.11.032.
    [23] X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, Journal of Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.
    [24] Y. Hu and D. Nualart, Rough path analysis via fractional calculus, Transactions of the American Mathematical Society, 361 (2009), 2689-2718.  doi: 10.1090/S0002-9947-08-04631-X.
    [25] J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D: Nonlinear Phenomena, 233 (2007), 83-94.  doi: 10.1016/j.physd.2007.06.008.
    [26] Y. Lv and J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equations, Physica D: Nonlinear Phenomena, 221 (2006), 157-169.  doi: 10.1016/j.physd.2006.07.02.
    [27] Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems, Chaos, Solitons & Fractals, 27 (2006), 1080-1090.  doi: 10.1016/j.chaos.2005.04.089.
    [28] J. Mallet-Paret and S.-N. Chow, Pattern formation and spatial chaos in lattice dynamical systems-II, IEEE Transactions on Circuits and Systems, 42 (1995), 752-756.  doi: 10.1109/81.473583.
    [29] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.
    [30] B. Wang, Dynamics of systems on infinite lattices, Journal of Differential Equations, 221 (2006), 224-245.  doi: 10.1016/j.jde.2005.01.003.
    [31] X. WangS. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010), 483-494.  doi: 10.1016/j.na.2009.06.094.
    [32] Y. WangJ. Xu and P. E. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlinear Analysis-Theory Methods & Applications, 135 (2016), 205-222.  doi: 10.1016/j.na.2016.01.020.
    [33] S. Zhou, Attractors for second order lattice dynamical systems, Journal of Differential Equations, 179 (2002), 606-624.  doi: 10.1006/jdeq.2001.4032.
    [34] S. Zhou, Attractors and approximations for lattice dynamical systems, Journal of Differential Equations, 200 (2004), 342-268.  doi: 10.1016/j.jde.2004.02.005.
    [35] S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, Journal of Differential Equations, 224 (2006), 172-204.  doi: 10.1016/j.jde.2005.06.024.
  • 加载中
SHARE

Article Metrics

HTML views(323) PDF downloads(294) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return