February  2020, 19(2): 1037-1055. doi: 10.3934/cpaa.2020048

Local uniqueness problem for a nonlinear elliptic equation

1. 

School of Information and Mathematics, Yangtze University, Jingzhou 434023, China

2. 

Department of Mathematics, Jianghan University, Wuhan, Hubei, 430056, China

* Corresponding author

Received  March 2019 Revised  March 2019 Published  October 2019

Fund Project: Wan is supported by Scientific Research Fund of Hubei Provincial Education Department (B2013155). The corresponding author Xiang is financially supported by NSFC (No. 11701045) and the Yangtze Youth Fund (No. 2016cqn56).

In this paper, we consider the following nonlinear Schrödinger equation
$ \begin{eqnarray*} - \varepsilon^{2}\Delta u_{ \varepsilon}+u_{ \varepsilon} = K(x)u_{ \varepsilon}^{p-1} & & {\rm{in\;}}\mathbb{R}^{N}, \end{eqnarray*} $
where
$ N\ge3 $
and
$ 2<p<2N/(N-2) $
. Under mild assumptions on the function
$ K $
and using the local Pohozaev identity method developed by Deng, Lin and Yan [10], we show that multi-peak solutions to the above equation are unique for
$ \varepsilon>0 $
sufficiently small.
Citation: Miao Chen, Youyan Wan, Chang-Lin Xiang. Local uniqueness problem for a nonlinear elliptic equation. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1037-1055. doi: 10.3934/cpaa.2020048
References:
[1]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.

[2]

A. AmbrosettiA. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., 18 (2005), 317-348.  doi: 10.1007/BF02790279.

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Diff. Int. Equats., 18 (2005), 1321-1332. 

[4]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.

[5]

T. Bartsch and S. Peng, Semiclassical symmetric Schrödinger equations: existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys., 58 (2007), 778-804.  doi: 10.1007/s00033-006-5111-x.

[6]

D. Cao and H. P. Heinz, Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations, Math. Z., 243 (2003), 599-642.  doi: 10.1007/s00209-002-0485-8.

[7]

D. CaoS. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.  doi: 10.1007/s00526-015-0930-2.

[8]

D. CaoE. S. Noussair and S. Yan, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Royal Soc. Edinburgh, 129 (1999), 235-264.  doi: 10.1017/S030821050002134X.

[9]

D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Comm. Partial Differential Equations, 34 (2009), 1566-1591.  doi: 10.1080/03605300903346721.

[10]

Y. DengC.-S. Lin and S. Yan, On the prescribed scalar curvature problem in $\mathbb R^{N}$, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013-1044.  doi: 10.1016/j.matpur.2015.07.003.

[11]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Cal. Var. PDE, 4 (1996), 121-137.  doi: 10.1007/BF01189950.

[12]

M. del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127-149.  doi: 10.1016/S0294-1449(97)89296-7.

[13]

A. Floer and A. Weinstein, Nonspeading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.  doi: 10.1016/0022-1236(86)90096-0.

[14]

L. Glangetas, Uniqueness of positive solutions of a nonlinear equation involving the critical exponent, Nonlinear Anal. TMA, 20 (1993), 115-178.  doi: 10.1016/0362-546X(93)90039-U.

[15]

M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Lineairé, 19 (2002), 261-280.  doi: 10.1016/S0294-1449(01)00089-0.

[16]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Commun. Part. Differ. Equ., 21 (1996), 787-820.  doi: 10.1080/03605309608821208.

[17]

Y. GuoS. Peng and S. Yan, Local uniqueness and periodicity induced by concentration, Proc. Lond. Math. Soc., 114 (2017), 1005-1043.  doi: 10.1112/plms.12029.

[18]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbf{R}^{n}$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[19]

G. Li, P. Luo, S. Peng, C. Wang and C.-L. Xiang, Uniqueness and nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems, arXiv: 1703.05459. doi: 10.1017/prm.2018.108.

[20]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. London Math. Soc., 62 (2000), 213-227.  doi: 10.1112/S002461070000898X.

[21]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_{a}$, Commun. Part. Differ. Equ., 13 (1988), 1499-1519.  doi: 10.1080/03605308808820585.

[22]

Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131 (1990), 223-253. 

[23]

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

show all references

References:
[1]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.

[2]

A. AmbrosettiA. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., 18 (2005), 317-348.  doi: 10.1007/BF02790279.

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Diff. Int. Equats., 18 (2005), 1321-1332. 

[4]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.

[5]

T. Bartsch and S. Peng, Semiclassical symmetric Schrödinger equations: existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys., 58 (2007), 778-804.  doi: 10.1007/s00033-006-5111-x.

[6]

D. Cao and H. P. Heinz, Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations, Math. Z., 243 (2003), 599-642.  doi: 10.1007/s00209-002-0485-8.

[7]

D. CaoS. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.  doi: 10.1007/s00526-015-0930-2.

[8]

D. CaoE. S. Noussair and S. Yan, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Royal Soc. Edinburgh, 129 (1999), 235-264.  doi: 10.1017/S030821050002134X.

[9]

D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Comm. Partial Differential Equations, 34 (2009), 1566-1591.  doi: 10.1080/03605300903346721.

[10]

Y. DengC.-S. Lin and S. Yan, On the prescribed scalar curvature problem in $\mathbb R^{N}$, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013-1044.  doi: 10.1016/j.matpur.2015.07.003.

[11]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Cal. Var. PDE, 4 (1996), 121-137.  doi: 10.1007/BF01189950.

[12]

M. del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127-149.  doi: 10.1016/S0294-1449(97)89296-7.

[13]

A. Floer and A. Weinstein, Nonspeading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.  doi: 10.1016/0022-1236(86)90096-0.

[14]

L. Glangetas, Uniqueness of positive solutions of a nonlinear equation involving the critical exponent, Nonlinear Anal. TMA, 20 (1993), 115-178.  doi: 10.1016/0362-546X(93)90039-U.

[15]

M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Lineairé, 19 (2002), 261-280.  doi: 10.1016/S0294-1449(01)00089-0.

[16]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Commun. Part. Differ. Equ., 21 (1996), 787-820.  doi: 10.1080/03605309608821208.

[17]

Y. GuoS. Peng and S. Yan, Local uniqueness and periodicity induced by concentration, Proc. Lond. Math. Soc., 114 (2017), 1005-1043.  doi: 10.1112/plms.12029.

[18]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbf{R}^{n}$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[19]

G. Li, P. Luo, S. Peng, C. Wang and C.-L. Xiang, Uniqueness and nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems, arXiv: 1703.05459. doi: 10.1017/prm.2018.108.

[20]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. London Math. Soc., 62 (2000), 213-227.  doi: 10.1112/S002461070000898X.

[21]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_{a}$, Commun. Part. Differ. Equ., 13 (1988), 1499-1519.  doi: 10.1080/03605308808820585.

[22]

Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131 (1990), 223-253. 

[23]

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[1]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[2]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[3]

Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $ \mathbb{T}^3 $. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116

[4]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[5]

Jaeyoung Byeon, Ohsang Kwon, Yoshihito Oshita. Standing wave concentrating on compact manifolds for nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2015, 14 (3) : 825-842. doi: 10.3934/cpaa.2015.14.825

[6]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

[7]

Razvan Mosincat, Haewon Yoon. Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 47-80. doi: 10.3934/dcds.2020003

[8]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[9]

Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003

[10]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[11]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[13]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[14]

Xavier Ros-Oton, Joaquim Serra. Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2131-2150. doi: 10.3934/dcds.2015.35.2131

[15]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[16]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[17]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014

[18]

Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2721-2757. doi: 10.3934/dcdsb.2021156

[19]

Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731

[20]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (211)
  • HTML views (82)
  • Cited by (0)

Other articles
by authors

[Back to Top]