• Previous Article
    Optimal global asymptotic behavior of the solution to a singular monge-ampère equation
  • CPAA Home
  • This Issue
  • Next Article
    Dynamics of a multigroup SIRS epidemic model with random perturbations and varying total population size
February  2020, 19(2): 1111-1128. doi: 10.3934/cpaa.2020051

Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaan xi, 710129, China

* Corresponding author: Pengcheng Niu

Received  April 2019 Revised  June 2019 Published  October 2019

Fund Project: The first author is supported by NSFC grant No. 11771354 and Natural Science Basic Research Plan in Shaanxi Province of China grant No.2017JM5140.

In this article, we consider the cooperative semi-linear fractional system
$ (-\Delta)^{\frac{\alpha}{2}}\vec {u}(x) = \vec {h}(x,\vec {u}(x)), $
where
$ 0<\alpha <2 $
,
$ \vec u $
and
$ \vec h $
stand for
$ k $
-dimentional vector-valued functions, and
$ \vec {h}(x,\vec {u}(x)) $
is locally Lipschitz in
$ \vec {u} $
. We first establish two narrow region principles for different cases. Based on these principles, we use the direct method of moving spheres to prove the non-existence of positive solutions of the above system in bounded star-shaped domains and the whole space.
Citation: Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051
References:
[1]

D. Applebeaum, Lévy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.

[2]

J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972.

[3]

M. BelloniV. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys., 54 (2003), 771-783.  doi: 10.1007/s00033-003-3209-y.

[4]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics 121, Cambridge University Press, Cambridge, 1996.

[5]

P. J. Bouchard and A. Georges, Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications, Phys. Rep., 195 (1990), 127-293. 

[6]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.

[7]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Advances in Math., 224 (2010), 2052-2053.  doi: 10.1016/j.aim.2010.01.025.

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Patial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[9]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.

[10]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems, Discrete Contin. Dyn. Syst., 33 (2013), 3937-3955.  doi: 10.3934/dcds.2013.33.3937.

[11]

W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017). doi: 10.1007/s00526-017-1110-3.

[12]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Advances in Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.

[13]

W. ChenY. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.

[14]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems, J. Math. Anal. Appl., 377 (2001), 744-753.  doi: 10.1016/j.jmaa.2010.11.035.

[15]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, Mathematical Foundation of Turbulent Viscous Flows, Lecture notes in Math. Springer, Berlin, 1871 (2006), 1–43. doi: 10.1007/11545989_1.

[16]

M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.

[17]

S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl., 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y.

[18]

D. LiP. Niu and R. Zhuo, Nonexistence of positive solutions for an integral equation related to the Hardy-Sobolev inequality, Acta Appl. Math., 134 (2014), 185-200.  doi: 10.1007/s10440-014-9878-z.

[19]

D. Li, P. Niu and R. Zhuo, Symmetry and non-existence of positive solutions for PDE system with Navier boundary conditions on a half space, Compex Var. Elliptic Equ., 59 (2014). doi: 10.1080/17476933.2013.854346.

[20]

D. LiP. Niu and R. Zhuo, Symmetry and nonexistence of positive solutions of integral systems with hardy term, J. Math. Anal. Appl., 424 (2015), 915-931.  doi: 10.1016/j.jmaa.2014.11.029.

[21]

G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.

[22]

W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations, 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.

[23]

V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Comm. Nonl Sci. Numer. Simul., 11 (2006), 885-898.  doi: 10.1016/j.cnsns.2006.03.005.

[24]

P. Wang and P. Niu, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pur. Appl. Anal., 16 (2017), 1707-1718. 

[25]

P. Wang and M. Yu, Solutions of fully nonlinear nonlocal systems, J. Math. Anal. Appl., 450 (2017), 982-995. 

[26]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and non-existence of solutions for nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.

[27]

R. Zhuo and D. Li, A system of integral equations on half space, J. Math. Anal. Appl., 381 (2011), 392-401. 

show all references

References:
[1]

D. Applebeaum, Lévy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.

[2]

J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972.

[3]

M. BelloniV. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys., 54 (2003), 771-783.  doi: 10.1007/s00033-003-3209-y.

[4]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics 121, Cambridge University Press, Cambridge, 1996.

[5]

P. J. Bouchard and A. Georges, Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications, Phys. Rep., 195 (1990), 127-293. 

[6]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.

[7]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Advances in Math., 224 (2010), 2052-2053.  doi: 10.1016/j.aim.2010.01.025.

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Patial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[9]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.

[10]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems, Discrete Contin. Dyn. Syst., 33 (2013), 3937-3955.  doi: 10.3934/dcds.2013.33.3937.

[11]

W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017). doi: 10.1007/s00526-017-1110-3.

[12]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Advances in Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.

[13]

W. ChenY. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.

[14]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems, J. Math. Anal. Appl., 377 (2001), 744-753.  doi: 10.1016/j.jmaa.2010.11.035.

[15]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, Mathematical Foundation of Turbulent Viscous Flows, Lecture notes in Math. Springer, Berlin, 1871 (2006), 1–43. doi: 10.1007/11545989_1.

[16]

M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.

[17]

S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl., 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y.

[18]

D. LiP. Niu and R. Zhuo, Nonexistence of positive solutions for an integral equation related to the Hardy-Sobolev inequality, Acta Appl. Math., 134 (2014), 185-200.  doi: 10.1007/s10440-014-9878-z.

[19]

D. Li, P. Niu and R. Zhuo, Symmetry and non-existence of positive solutions for PDE system with Navier boundary conditions on a half space, Compex Var. Elliptic Equ., 59 (2014). doi: 10.1080/17476933.2013.854346.

[20]

D. LiP. Niu and R. Zhuo, Symmetry and nonexistence of positive solutions of integral systems with hardy term, J. Math. Anal. Appl., 424 (2015), 915-931.  doi: 10.1016/j.jmaa.2014.11.029.

[21]

G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.

[22]

W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations, 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.

[23]

V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Comm. Nonl Sci. Numer. Simul., 11 (2006), 885-898.  doi: 10.1016/j.cnsns.2006.03.005.

[24]

P. Wang and P. Niu, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pur. Appl. Anal., 16 (2017), 1707-1718. 

[25]

P. Wang and M. Yu, Solutions of fully nonlinear nonlocal systems, J. Math. Anal. Appl., 450 (2017), 982-995. 

[26]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and non-existence of solutions for nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.

[27]

R. Zhuo and D. Li, A system of integral equations on half space, J. Math. Anal. Appl., 381 (2011), 392-401. 

[1]

Jérôme Coville, Nicolas Dirr, Stephan Luckhaus. Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks and Heterogeneous Media, 2010, 5 (4) : 745-763. doi: 10.3934/nhm.2010.5.745

[2]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems and Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[3]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[4]

Farah Abou Shakra. Asymptotics of wave models for non star-shaped geometries. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 347-362. doi: 10.3934/dcdss.2014.7.347

[5]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[6]

Jason Metcalfe, Christopher D. Sogge. Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1589-1601. doi: 10.3934/dcds.2010.28.1589

[7]

Takahiro Hashimoto. Nonexistence of global solutions of nonlinear Schrodinger equations in non star-shaped domains. Conference Publications, 2007, 2007 (Special) : 487-494. doi: 10.3934/proc.2007.2007.487

[8]

F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783

[9]

Zhong-Jie Han, Enrique Zuazua. Decay rates for elastic-thermoelastic star-shaped networks. Networks and Heterogeneous Media, 2017, 12 (3) : 461-488. doi: 10.3934/nhm.2017020

[10]

Ahmed Bchatnia, Amina Boukhatem. Stability of a damped wave equation on an infinite star-shaped network. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022024

[11]

Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041

[12]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[13]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[14]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[15]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[16]

Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237

[17]

Xuewei Cui, Mei Yu. Non-existence of positive solutions for a higher order fractional equation. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1379-1387. doi: 10.3934/dcds.2019059

[18]

Jason R. Morris. A Sobolev space approach for global solutions to certain semi-linear heat equations in bounded domains. Conference Publications, 2009, 2009 (Special) : 574-582. doi: 10.3934/proc.2009.2009.574

[19]

Byung-Soo Lee. Strong convergence theorems with three-step iteration in star-shaped metric spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 371-379. doi: 10.3934/naco.2011.1.371

[20]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (261)
  • HTML views (80)
  • Cited by (0)

Other articles
by authors

[Back to Top]