Advanced Search
Article Contents
Article Contents

Hydrodynamic limit of the kinetic thermomechanical Cucker-Smale model in a strong local alignment regime

  • * Corresponding author

    * Corresponding author
Abstract Full Text(HTML) Related Papers Cited by
  • We present a hydrodynamic limit from the kinetic thermomechanical Cucker-Smale (TCS) model to the hydrodynamic Cucker-Smale (CS) model in a strong local alignment regime. For this, we first provide a global existence of weak solution, and flocking dynamics for classical solution to the kinetic TCS model with local alignment force. Then we consider one-parameter family of well-prepared initial data to the kinetic TCS model in which the temperature tends to common constant value determined by initial datum, as singular parameter $ \varepsilon $ tends to zero. In a strong local alignment regime, the limit model is the hydrodynamic CS model in [8]. To verify this hydrodynamic limit rigorously, we adopt the technique introduced in [5] which combines the relative entropy method together with the 2-Wasserstein metric.

    Mathematics Subject Classification: Primary: 92D25, 74A25; Secondary: 76N10.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] Y.-P. ChoiS.-Y. Ha and J. Kim, Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication, Netw. Heterog. Media, 13 (2018), 379-407.  doi: 10.3934/nhm.2018017.
    [2] Y.-P. ChoiS.-Y. HaJ. Jung and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597-1640.  doi: 10.1088/1361-6544/aafaae.
    [3] Y.-P. Choi, S.-Y. Ha, J. Jung and J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system, To appear in J. Math. Fluid Mech.
    [4] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.
    [5] A. Figalli and M.-J. Kang, A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, 12 (2019), 843-866.  doi: 10.2140/apde.2019.12.843.
    [6] S.-Y. HaM.-J. Kang and B. Kwon, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Models Methods Appl. Sci., 24 (2014), 2311-2359.  doi: 10.1142/S0218202514500225.
    [7] S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, Uniform stability and mean-field limit of thermodynamic Cucker-Smale model, Quart. Appl. Math., 77 (2019), 131-176.  doi: 10.1090/qam/1517.
    [8] S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, A global existence of classical solution to the hydrodynamic Cucker-Smale model in presence of temperature field, Anal. Appl., 16 (2018), 757-805.  doi: 10.1142/S0219530518500033.
    [9] S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of thermodynamic Cucker-Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121.  doi: 10.1137/17M111064X.
    [10] S.-Y. HaZ. LiM. Slemrod and X. Xue, Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, Quart. Appl. Math., 72 (2014), 689-701.  doi: 10.1090/S0033-569X-2014-01350-5.
    [11] S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325. 
    [12] S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Rational Mech. Anal., 223 (2017), 1397-1425.  doi: 10.1007/s00205-016-1062-3.
    [13] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.
    [14] P.-E. Jabin and T. Rey, Hydrodynamic limit of granular gases to pressureless Euler in dimension one, Quart. Appl. Math., 75 (2017), 155-179.  doi: 10.1090/qam/1442.
    [15] M.-J. Kang, From the Vlasov-Poisson equation with strong local alignment to the pressureless Euler-Poisson system, Appl. Math. Lett., 79 (2018), 85-91.  doi: 10.1016/j.aml.2017.12.001.
    [16] M.-J. Kang and A. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.
    [17] T. K. KarperA. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131-163.  doi: 10.1142/S0218202515500050.
    [18] T. K. KarperA. Mellet and K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.  doi: 10.1137/120866828.
    [19] T. K. Karper, A. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, in: Hyperbolic conservation laws and related analysis with applications, in Springer Proceedings in Math. Statistics, 49 (2014), 227-242. doi: 10.1007/978-3-642-39007-4_11.
    [20] A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck compressible Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.  doi: 10.1007/s00220-008-0523-4.
    [21] S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 141 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.
    [22] D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089-1152.  doi: 10.1142/S0218202517400103.
    [23] A. Vasseur, Recent results on hydrodynamic limits, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, in: Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 323–376. doi: 10.1016/S1874-5717(08)00007-8.
    [24] T. VicsekCz irókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.
  • 加载中

Article Metrics

HTML views(316) PDF downloads(342) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint