March  2020, 19(3): 1257-1273. doi: 10.3934/cpaa.2020060

Stochastic functional Hamiltonian system with singular coefficients

1. 

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

2. 

Department of Statistics, College of Science, Donghua University, Shanghai 201620, China

* Corresponding author

Received  February 2019 Revised  August 2019 Published  November 2019

By Zvonkin type transforms, the existence and uniqueness of the strong solutions for a class of stochastic functional Hamiltonian systems are obtained, where the drift contains a Hölder-Dini continuous perturbation. Moreover, under some reasonable conditions, the non-explosion of the solution is proved. In addition, as applications, the Harnack and shift Harnack inequalities are derived by method of coupling by change of measure. These inequalities are new even in the case without delay and the shift Harnack inequality is also new even in the non-degenerate functional SDEs with singular drifts.

Citation: Xing Huang, Wujun Lv. Stochastic functional Hamiltonian system with singular coefficients. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1257-1273. doi: 10.3934/cpaa.2020060
References:
[1]

K. Bahlali, Flows of homeomorphisms of stochastic differential equations with measurable drift, Stochastic Rep., 67 (1999), 53–82. doi: 10.1080/17442509908834203.

[2]

S. Bachmann, Well-posedness and stability for a class of stochastic delay differential equations with singular drift, Stoch. Dyn., 18 (2018). doi: 10.1142/S0219493718500193.

[3]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434.

[4]

J. Bao, F.-Y. Wang and C. Yuan, Derivative formula and Harnack inequality for degenerate functionals SDEs, Stoch. Dyn., 13 (2013), 943–951. doi: 10.1142/S021949371250013X.

[5]

E. Chaudru de Raynal, Weak regularization by stochastic drift: result and counter example, Discrete Cont Dyn-A, 38 (2018), 1269–1291. doi: 10.3934/dcds.2018052.

[6]

E. Chaudru de Raynal and S. Menozzi, Regularization effects of a noise propagating through a chain of differential equations: an almost sharp result, arXiv: 1710.03620.

[7]

I. Csiszár and J. Körne, Information Theory: Coding Theorems for Discrete Memory-less Systems, Academic Press, New York, 1981.

[8]

Z.-Q Chen and X. C. Zhang, Propagation of regularity in $L^p$-spaces for Kolmogorov type hypoelliptic operators, arXiv: 1706.02181.

[9]

E. Fedrizzi, F. Flandoli, E. Priola and J. Vovelle, Regularity of stochastic kinetic equations, Electron J Probab, 22 (2017), 1–48. doi: 10.1214/17-EJP65.

[10]

A. Guillin and F.-Y. Wang, Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality, J. Differential Equations, 253 (2012), 20–40. doi: 10.1016/j.jde.2012.03.014.

[11]

L. Gyöngy and T. Martinez, On stochastic differential equations with locally unbounded drift, Czechoslovak Math. J., 51 (2001), 763–783. doi: 10.1023/A:1013764929351.

[12]

X. Huang, Strong solutions for functional SDEs with singular drift, Stoch. Dyn., 18 (2018). doi: 10.1142/S0219493718500156.

[13]

X. Huang and F.-Y. Wang, Functional SPDE with multiplicative noise and Dini drift, Ann. Fac. Sci. Toulouse Math., 6 (2017), 519–537. doi: 10.5802/afst.1544.

[14]

X. Huang and F.-Y. Wang, Degenerate SDEs with singular drift and applications to Heisenberg groups, J. Differential Equations, 265 (2018), 2745–2777. doi: 10.1016/j.jde.2018.04.050.

[15]

X. Huang and S.-Q. Zhang, Mild solutions and Harnack inequality for functional stochastic partial differential equations with Dini drift, J. Theoret. Probab., 32 (2019), 303–329. doi: 10.1007/s10959-018-0830-4.

[16]

E. Priola, Pathwise uniqueness for singular SDEs driven by stable processes, Osaka Journal of Mathematics, 49 (2012), 421–447.

[17]

M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.

[18]

T. Seidman, How violent are fast controls, Mathematics of Control Signals Systems, 1 (1988), 89–95. doi: 10.1007/BF02551238.

[19]

J. Shao, F.-Y. Wang and C. Yuan, Harnack inequalities for stochastic (functional) differential equations with non-Lipschitzian coefficients, Elect. J. Probab., 17 (2012), 1–18. doi: 10.1214/EJP.v17-2140.

[20]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009). doi: 10.1090/S0065-9266-09-00567-5.

[21]

Y. Wang, Gradient estimate and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differential Equations, 260 (2016), 2792–2829. doi: 10.1016/j.jde.2015.10.020.

[22]

Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations, Springer, New York, 2013. doi: 10.1007/978-1-4614-7934-5.

[23]

Y. Wang, Hypercontractivity and applications for stochastic Hamiltonian systems, J. Funct. Anal., 272 (2017), 5360–5383. doi: 10.1016/j.jfa.2017.03.015.

[24]

Y. Wang and X. C. Zhang, Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl., 99 (2013), 726–740. doi: 10.1016/j.matpur.2012.10.007.

[25]

Y. Wang and X. C. Zhang, Degenerate SDE with Hölder-Dini drift and non-Lipschitz noise coefficient, SIAM J. Math. Anal., 48 (2016), 2189–2226. doi: 10.1137/15M1023671.

[26]

X. C. Zhang, Stochastic flows and Bismut formulas for stochastic Hamiltonian systems, Stoch. Proc. Appl., 120 (2010), 1929–1949. doi: 10.1016/j.spa.2010.05.015.

[27]

X. C. Zhang, Strong solutions of SDEs with singural drift and Sobolev diffusion coefficients, Stoch. Proc. Appl., 115 (2005), 1805–1818. doi: 10.1016/j.spa.2005.06.003.

[28]

X. C. Zhang, Stochastic hamiltonian flows with singular coefficients, Sci China Math, 61 (2018), 1353–1384. doi: 10.1007/s11425-017-9127-0.

[29]

A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Math. Sb., 93 (1974), 129–149,152.

show all references

References:
[1]

K. Bahlali, Flows of homeomorphisms of stochastic differential equations with measurable drift, Stochastic Rep., 67 (1999), 53–82. doi: 10.1080/17442509908834203.

[2]

S. Bachmann, Well-posedness and stability for a class of stochastic delay differential equations with singular drift, Stoch. Dyn., 18 (2018). doi: 10.1142/S0219493718500193.

[3]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434.

[4]

J. Bao, F.-Y. Wang and C. Yuan, Derivative formula and Harnack inequality for degenerate functionals SDEs, Stoch. Dyn., 13 (2013), 943–951. doi: 10.1142/S021949371250013X.

[5]

E. Chaudru de Raynal, Weak regularization by stochastic drift: result and counter example, Discrete Cont Dyn-A, 38 (2018), 1269–1291. doi: 10.3934/dcds.2018052.

[6]

E. Chaudru de Raynal and S. Menozzi, Regularization effects of a noise propagating through a chain of differential equations: an almost sharp result, arXiv: 1710.03620.

[7]

I. Csiszár and J. Körne, Information Theory: Coding Theorems for Discrete Memory-less Systems, Academic Press, New York, 1981.

[8]

Z.-Q Chen and X. C. Zhang, Propagation of regularity in $L^p$-spaces for Kolmogorov type hypoelliptic operators, arXiv: 1706.02181.

[9]

E. Fedrizzi, F. Flandoli, E. Priola and J. Vovelle, Regularity of stochastic kinetic equations, Electron J Probab, 22 (2017), 1–48. doi: 10.1214/17-EJP65.

[10]

A. Guillin and F.-Y. Wang, Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality, J. Differential Equations, 253 (2012), 20–40. doi: 10.1016/j.jde.2012.03.014.

[11]

L. Gyöngy and T. Martinez, On stochastic differential equations with locally unbounded drift, Czechoslovak Math. J., 51 (2001), 763–783. doi: 10.1023/A:1013764929351.

[12]

X. Huang, Strong solutions for functional SDEs with singular drift, Stoch. Dyn., 18 (2018). doi: 10.1142/S0219493718500156.

[13]

X. Huang and F.-Y. Wang, Functional SPDE with multiplicative noise and Dini drift, Ann. Fac. Sci. Toulouse Math., 6 (2017), 519–537. doi: 10.5802/afst.1544.

[14]

X. Huang and F.-Y. Wang, Degenerate SDEs with singular drift and applications to Heisenberg groups, J. Differential Equations, 265 (2018), 2745–2777. doi: 10.1016/j.jde.2018.04.050.

[15]

X. Huang and S.-Q. Zhang, Mild solutions and Harnack inequality for functional stochastic partial differential equations with Dini drift, J. Theoret. Probab., 32 (2019), 303–329. doi: 10.1007/s10959-018-0830-4.

[16]

E. Priola, Pathwise uniqueness for singular SDEs driven by stable processes, Osaka Journal of Mathematics, 49 (2012), 421–447.

[17]

M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.

[18]

T. Seidman, How violent are fast controls, Mathematics of Control Signals Systems, 1 (1988), 89–95. doi: 10.1007/BF02551238.

[19]

J. Shao, F.-Y. Wang and C. Yuan, Harnack inequalities for stochastic (functional) differential equations with non-Lipschitzian coefficients, Elect. J. Probab., 17 (2012), 1–18. doi: 10.1214/EJP.v17-2140.

[20]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009). doi: 10.1090/S0065-9266-09-00567-5.

[21]

Y. Wang, Gradient estimate and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differential Equations, 260 (2016), 2792–2829. doi: 10.1016/j.jde.2015.10.020.

[22]

Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations, Springer, New York, 2013. doi: 10.1007/978-1-4614-7934-5.

[23]

Y. Wang, Hypercontractivity and applications for stochastic Hamiltonian systems, J. Funct. Anal., 272 (2017), 5360–5383. doi: 10.1016/j.jfa.2017.03.015.

[24]

Y. Wang and X. C. Zhang, Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl., 99 (2013), 726–740. doi: 10.1016/j.matpur.2012.10.007.

[25]

Y. Wang and X. C. Zhang, Degenerate SDE with Hölder-Dini drift and non-Lipschitz noise coefficient, SIAM J. Math. Anal., 48 (2016), 2189–2226. doi: 10.1137/15M1023671.

[26]

X. C. Zhang, Stochastic flows and Bismut formulas for stochastic Hamiltonian systems, Stoch. Proc. Appl., 120 (2010), 1929–1949. doi: 10.1016/j.spa.2010.05.015.

[27]

X. C. Zhang, Strong solutions of SDEs with singural drift and Sobolev diffusion coefficients, Stoch. Proc. Appl., 115 (2005), 1805–1818. doi: 10.1016/j.spa.2005.06.003.

[28]

X. C. Zhang, Stochastic hamiltonian flows with singular coefficients, Sci China Math, 61 (2018), 1353–1384. doi: 10.1007/s11425-017-9127-0.

[29]

A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Math. Sb., 93 (1974), 129–149,152.

[1]

Fen-Fen Yang. Harnack inequality and gradient estimate for functional G-SDEs with degenerate noise. Probability, Uncertainty and Quantitative Risk, , () : -. doi: 10.3934/puqr.2022008

[2]

Minghui Song, Liangjian Hu, Xuerong Mao, Liguo Zhang. Khasminskii-type theorems for stochastic functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1697-1714. doi: 10.3934/dcdsb.2013.18.1697

[3]

Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control and Related Fields, 2021, 11 (4) : 857-883. doi: 10.3934/mcrf.2020049

[5]

Sergio Polidoro, Annalaura Rebucci, Bianca Stroffolini. Schauder type estimates for degenerate Kolmogorov equations with Dini continuous coefficients. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1385-1416. doi: 10.3934/cpaa.2022023

[6]

Nanhee Kim. Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress. Evolution Equations and Control Theory, 2013, 2 (4) : 679-693. doi: 10.3934/eect.2013.2.679

[7]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

[8]

Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180

[9]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[10]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[11]

Ya Wang, Fuke Wu, Xuerong Mao, Enwen Zhu. Advances in the LaSalle-type theorems for stochastic functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 287-300. doi: 10.3934/dcdsb.2019182

[12]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure and Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[13]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[14]

Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569

[15]

Guangying Lv, Hongjun Gao, Jinlong Wei, Jiang-Lun Wu. On the Campanato and Hölder regularity of local and nonlocal stochastic diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022119

[16]

Antonio Avantaggiati, Paola Loreti, Cristina Pocci. Mixed norms, functional Inequalities, and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1855-1867. doi: 10.3934/dcdsb.2014.19.1855

[17]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[18]

Boris Muha. A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function. Networks and Heterogeneous Media, 2014, 9 (1) : 191-196. doi: 10.3934/nhm.2014.9.191

[19]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure and Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[20]

Jun Zhou, Jun Shen. Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3605-3624. doi: 10.3934/dcdsb.2021198

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (282)
  • HTML views (71)
  • Cited by (0)

Other articles
by authors

[Back to Top]