In this paper, we investigate positive viscosity solutions of a third degree homogeneous parabolic equation $ u^{2}u_{t} = \Delta_{\infty}u $. We prove a comparison principle, existence and uniqueness of continuous positive viscosity solutions.
Citation: |
[1] |
G. Akagi, P. Juutinen and R. Kajikiya, Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Math. Annalen, 343 (2009), 921-953.
doi: 10.1007/s00208-008-0297-1.![]() ![]() ![]() |
[2] |
G. Akagi and K. Suzuki, On a certain degenerate parabolic equation associated with the infinity-Laplacian, Discrete Contin. Dyn. Syst., (supplement), (2007), 18–27.
![]() ![]() |
[3] |
G. Akagi and K. Suzuki, Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Calc. Var. and Partical Differential Equations, 31 (2008), 457-471.
doi: 10.1007/s00526-007-0117-6.![]() ![]() ![]() |
[4] |
G. Aronsson, Minimization problems for the functional supxF(x, f(x), f'(x)),, Ark. Mat., 6 (1965), 33-53.
doi: 10.1007/BF02591326.![]() ![]() ![]() |
[5] |
G. Aronsson, Minimization problems for the functional supxF(x, f(x), f'(x)), Ⅱ, Ark. Mat., 6 (1966), 409-431.
doi: 10.1007/BF02590964.![]() ![]() ![]() |
[6] |
G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561.
doi: 10.1007/BF02591928.![]() ![]() ![]() |
[7] |
G. Aronsson, M. Crandall and P. Juutien, A tour of the theory of absolute minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505.
doi: 10.1090/S0273-0979-04-01035-3.![]() ![]() ![]() |
[8] |
F. Cao, Approximations dequations paraboliques par des schemas invariants; une theorie de linterpolation; applications au traitement dimages, PhD Thesis (in English), 2000.
![]() |
[9] |
V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation, IEEE Trans. Image Process, 7 (1998), 376-386.
doi: 10.1109/83.661188.![]() ![]() ![]() |
[10] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. and Partical Differential Equations, 13 (2001), 123-139.
![]() ![]() |
[11] |
M. G. Crandall, H. Ishii and P.-L Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5.![]() ![]() ![]() |
[12] |
M. G. Crandall and P. Wang, Another way to say caloric. Dedicated to Philippe Benilan, J. Evol. Equ., 3 (2003), 653-672.
doi: 10.1007/s00028-003-0146-3.![]() ![]() ![]() |
[13] |
R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 1-74.
doi: 10.1007/BF00386368.![]() ![]() ![]() |
[14] |
P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian, Math. Ann., 335 (2006), 819-851.
doi: 10.1007/s00208-006-0766-3.![]() ![]() ![]() |
[15] |
O. A. Ladyženskaya, V. A. Solommikov and N. N. Urall'ceva, Linear and Quasilinear Equations of Parabolic Type, in Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R. I., (1967).
![]() ![]() |
[16] |
P. Lindqvist, Notes on the Infinity Laplace Equation(SpringerBriefs in Mathematics), Springer, (2016).
doi: 10.1007/978-3-319-31532-4.![]() ![]() ![]() |
[17] |
M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the $p$-Laplace diffusion equation, Comm. Partial Differential Equations, 22 (1997), 381-411.
doi: 10.1080/03605309708821268.![]() ![]() ![]() |
[18] |
M. Portilheiro and J. L. Vázquez, A porous medium equation involving the infinity-Laplacian, Viscosity solutions and asymptotic behaviour, Comm. Partial Differential Equations, 37 (2012), 753-793.
doi: 10.1080/03605302.2012.662665.![]() ![]() ![]() |
[19] |
M. Portilheiro and J. L. Vázquez, Degenerate homogeneous parabolic equations associated with the infinity-Laplacian, Calc. Var. and Partial Differential Equations, 31 (2012), 457-471.
doi: 10.1007/s00526-012-0500-9.![]() ![]() ![]() |