\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Study of semi-linear $ \sigma $-evolution equations with frictional and visco-elastic damping

  • * Corresponding author

    * Corresponding author 

The first author is supported by Vietnamese Government's Scholarship (Grant number: 2015/911)

Abstract Full Text(HTML) Related Papers Cited by
  • In this article, we study semi-linear $ \sigma $-evolution equations with double damping including frictional and visco-elastic damping for any $ \sigma\ge 1 $. We are interested in investigating not only higher order asymptotic expansions of solutions but also diffusion phenomenon in the $ L^p-L^q $ framework, with $ 1\le p\le q\le \infty $, to the corresponding linear equations. By assuming additional $ L^{m} $ regularity on the initial data, with $ m\in [1, 2) $, we prove the global (in time) existence of small data energy solutions and indicate the large time behavior of global obtained solutions as well to semi-linear equations. Moreover, we also determine the so-called critical exponent when $ \sigma $ is integers.

    Mathematics Subject Classification: Primary: 35G25, 35B40; Secondary: 35B33, 35C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. D'Abbicco, $L^1-L^1$ estimates for a doubly dissipative semilinear wave equation, Nonlinear Differ. Equ. Appl., 24 (2017), 1-23.  doi: 10.1007/s00030-016-0428-4.
    [2] M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p-L^q$ framework, J. Differ. Equ., 256 (2014), 2307-2336.  doi: 10.1016/j.jde.2014.01.002.
    [3] M. D'Abbicco and M. R. Ebert, A classifiation of structural dissipations for evolution operators, Math. Methods Appl. Sci., 39 (2016), 2558-2582.  doi: 10.1002/mma.3713.
    [4] M. D'Abbicco and M. R. Ebert, A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations, Nonlinear Anal., 149 (2017), 1-40.  doi: 10.1016/j.na.2016.10.010.
    [5] M. D'Abbicco and M. Reissig, Semilinear structural damped waves, Math. Methods Appl. Sci., 37 (2014), 1570-1592.  doi: 10.1002/mma.2913.
    [6] T. A. Dao and M. Reissig, An application of $L^1$ estimates for oscillating integrals to parabolic like semi-linear structurally damped $\sigma$-evolution models, J. Math. Anal. Appl., 476 (2019), 426-463.  doi: 10.1016/j.jmaa.2019.03.048.
    [7] T. A. Dao and M. Reissig, $L^1$ estimates for oscillating integrals and their applications to semi-linear models with $\sigma$-evolution like structural damping, Discrete Contin. Dyn. Syst. A, 39 (2019), 5431-5463.  doi: 10.3934/dcds.2019222.
    [8] P. T. Duong and M. Reissig, The external damping Cauchy problems with general powers of the Laplacian, in, New Trends in Analysis and Interdisciplinary Applications: Trends in Mathematics, Birkhäuser, Cham (2017), pp. 537–543. doi: 10.1007/978-3-319-48812-7_68.
    [9] M. R. Ebert and M. Reissig, Methods for Partial Differential Equations, Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models, Birkhäuser, 2018. doi: 10.1007/978-3-319-66456-9.
    [10] V. A. Galaktionov, E. L. Mitidieri and S. I. Pohozaev, Blow-up for higher-order prabolic, hyperbolic, dispersion and Schrödinger equations, in, Monogr. Res. Notes Math., Chapman and Hall/CRC, 2014.
    [11] H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, Harmonic Analysis and Nonlinear Partial Differential Equations, Res. Inst. Math. Sci. (RIMS), RIMS Kokyuroku Bessatsu, B26, Kyoto, (2011), 159–175.
    [12] R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Differ. Equ., 257 (2014), 2159-2177.  doi: 10.1016/j.jde.2014.05.031.
    [13] R. Ikehata and H. Michihisa, Moment conditions and lower bounds in expanding solutions of wave equations with double damping terms, Asymptot. Anal., 114 (2019), 19–36.
    [14] R. Ikehata and A. Sawada, Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms, Asymptot. Anal., 98 (2016), 59-77.  doi: 10.3233/ASY-161361.
    [15] R. Ikehata and H. Takeda, Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal., 148 (2017), 228-253.  doi: 10.1016/j.na.2016.10.008.
    [16] R. IkehataG. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces, J. Differ. Equ., 254 (2013), 3352-3368.  doi: 10.1016/j.jde.2013.01.023.
    [17] H. Michihisa, Optimal leading term of solutions to wave equations with strong damping terms, Hokkaido Math. J., to appear.
    [18] H. Michihisa, Expanding methods for evolution operators of strongly damped wave equations, submitted, (2018).
    [19] T. Narazaki, $L^p-L^q$ estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan, 56 (2004), 585-626.  doi: 10.2969/jmsj/1191418647.
    [20] H. Takeda, Higher-order expansion of solutions for a damped wave equation, Asymptot. Anal., 94 (2015), 1-31.  doi: 10.3233/ASY-151295.
    [21] Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109-114.  doi: 10.1016/S0764-4442(01)01999-1.
  • 加载中
SHARE

Article Metrics

HTML views(933) PDF downloads(244) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return