[1]

I. Abdulrashid, A. M. A. Abdallah and X. Han, Stability analysis of a chemotherapy model with delays, 2019.

[2]

I. Abdulrashid, T. Caraballo and X. Han, Effects of delays in mathematical models of cancer chemotherapy, preprint.

[3]

P. Boyle and B. Levin, The World Cancer Report, World Health Oganization, 2008.

[4]

T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, SpringerBriefs in Mathematics, Springer, Cham, 2016.
doi: 10.1007/9783319492476.

[5]

A. F. Chambers, A. C. Groom and I. C. MacDonald, Metastasis: dissemination and growth of cancer cells in metastatic sites, Nature Rev. Cancer, 2 (2002), 563572.

[6]

M. Costa and J. Boldrini, Chemotherapeutic treatments: A study of the interplay among drugs resistance, toxicity and recuperation from side effects, Bull. Math. Biol., 59 (1997), 205232.

[7]

H. Cui, P. E. Kloeden and M. Yang, Forward omega limit sets of nonautonomous dynamical systems, Disc. Cont, Dyn, Sys. S, to appear.
doi: 10.3934/dcdss.2020065.

[8]

L. de Pillis, W. Gu and A. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretaions, J. Theoret. Bio., 238 (2006), 841862.
doi: 10.1016/j.jtbi.2005.06.037.

[9]

L. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cellmediated immune response to tumor growth, Cancer Res., 65 (2005), 79507958.

[10]

R. Dorr and D. Von Hoff, Cancer chemotherapy Handbook, Appleton and Lange, Connecticut, 1994.

[11]

M. Eisen, Mathematical models in cell biology and cancer chemotherapy, in Lect. Notes Biomath., vol. 30

[12]

J. K. Hale, Ordinary Differential Equations, Dover Publication, Mineola, NY, 1980.

[13]

X. Han, Dynamical analysis of chemotherapy model with timedependent infusion, Nonlinear Analysis: RWA, 34 (2017), 459480.
doi: 10.1016/j.nonrwa.2016.09.001.

[14]

P. E. Kloeden and C. Potzsche, Nonautonomous Dynamical Systems in the Life Sciences, Lecture Note in Math., Springer, New York, 2013.
doi: 10.1007/9783319030807_1.

[15]

P. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, in Mathematical Surveys and Monographs, Vol. 176, American Mathematical Society, Providence, RI, 2011.
doi: 10.1090/surv/176.

[16]

P. Krishnapriya and M. Pitchaimani, Optimal control of mixed immunotherapy and chemotherapy of tumors with discrete delay, Int. J. Dynam. Control, 5 (2017), 872892.
doi: 10.1007/s404350150221y.

[17]

A. Lopez, J. Seoane and M. Sanjuan, A validated mathematical model of tumor growth including tumor host interaction, cellmediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 28842906.
doi: 10.1007/s1153801400375.

[18]

J. Mackay and G. Mensah, The Atlas of Disease and Stroke, Published by the World Health Organization in Collaboration with the Centers for Disease Control and Prevention, 2004.

[19]

J. Murray, Optimal drug regimens in cancer chemotherapy for single drug that block progression through the cell cycle, Math. Biosci., 123 (1994), 183213.

[20]

F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosci., 163 (2000), 159199.
doi: 10.1016/S00255564(99)000589.

[21]

J. Panetta and J. Adam, A mathematical model of cyclespecific chemotherapy, Math. Comput. Modeling, 22 (1995), 6782.

[22]

S. Pinho, H. I. Freedman and F. Nani, A chemotherapy model for the treatment of cancer with metastasis, Math. Comput. Modeling, 36 (2002), 773803.
doi: 10.1016/S08957177(02)002273.

[23]

M. S. Rajput and P. Agrawal, Microspheres in cancer therapy, Indian J. Cancer, 47 (2010), 458468.

[24]

E. D. Sontag, Lecture Notes in Mathematical Biology, 2006.

[25]

E. D. Sontag, Lecture Notes on Mathematical Systems Biology, Northeastern University, Boston, 2018.

[26]

T. Wheldon, Mathematical Models in Cancer Research, Adam Hilger, Bristol, 1988.
