
-
Previous Article
Longtime behavior for 3D Navier-Stokes equations with constant delays
- CPAA Home
- This Issue
-
Next Article
Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary
On a delayed epidemic model with non-instantaneous impulses
1. | College of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China |
2. | Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain |
3. | Instituto de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain |
We introduce a non-instantaneous pulse vaccination model. Non-instantaneous impulsive nonlinear differential equations provide an adequate biomathematical model of some medical problems. In this paper we study some basic properties such as the attractiveness of the infection-free periodic solution and the permanence of some sub-population for a vaccine model where a constant fraction of the susceptible population is vaccinated in some periodic way. Our model is a system of nonlinear differential equations with impulses.
References:
[1] |
R. Agarwal, S. Hristova and D. O'Regan,
Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.
doi: 10.1016/j.jfranklin.2017.02.002. |
[2] |
R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer International Publishing, 2017.
doi: 10.1007/978-3-319-66384-5. |
[3] |
L. Bai and J. J. Nieto,
Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73 (2017), 44-48.
doi: 10.1016/j.aml.2017.02.019. |
[4] |
L. Bai, J. J. Nieto and X. Wang,
Variational approach to non-instantaneous impulsive nonlinear differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2440-2448.
doi: 10.22436/jnsa.010.05.14. |
[5] |
D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66, CRC Press, 1993.
![]() ![]() |
[6] |
M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, Journal of Fixed Point Theory and Applications, 21 (2019), 21.
doi: 10.1007/s11784-019-0660-8. |
[7] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag GmbH, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[8] |
K. L. Cooke and P. Van Den Driessche,
Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260.
doi: 10.1007/s002850050051. |
[9] |
O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical & Computational Biology, Wiley, 2000. |
[10] |
S. Gao, L. Chen, J. J. Nieto and A. Torres,
Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24 (2006), 6037-6045.
doi: 10.1016/j.chaos.2006.04.061. |
[11] |
H. Guo, L. Chen and X. Song, Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control, Int. J. Biomath., 10 (2017), 1750093.
doi: 10.1142/S1793524517500930. |
[12] |
E. Hernández and D. O'Regan,
On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.
doi: 10.1090/S0002-9939-2012-11613-2. |
[13] |
J. Jiao, S. Cai and L. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Physica A: Statistical Mechanics and its Applications, 449 (2016), 145 – 159.
doi: 10.1016/j.physa.2015.10.055. |
[14] |
A. Khaliq and M. U. Rehman,
On variational methods to non-instantaneous impulsive fractional differential equation, Applied Mathematics Letters, 83 (2018), 95-102.
doi: 10.1016/j.aml.2018.03.014. |
[15] |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6, World Scientific, 1989.
doi: 10.1142/0906. |
[16] |
Y. Luo, S. Gao and S. Yan, Pulse vaccination strategy in an epidemic model with two susceptible subclasses and time delay, Appl. Math., 2 (2011), 57.
doi: 10.4236/am.2011.21007. |
[17] |
D. J. Nokes and J. Swinton,
Vaccination in pulses: a strategy for global eradication of measles and polio?, Trends Microbiol., 5 (1997), 14-19.
|
[18] |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, vol. 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
doi: 10.1142/9789812798664. |
[19] |
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2010.
doi: 10.1007/978-1-4419-7646-8. |
[20] |
R. Terzieva,
Some phenomena for non-instantaneous impulsive differential equations, Int. J. Pure Appl. Math., 119 (2018), 483-490.
|
[21] |
J. Wang, Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., 73 (2017), 157 – 162.
doi: 10.1016/j.aml.2017.04.010. |
[22] |
Y. Xiao and L. Chen,
Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.
doi: 10.1016/S0025-5564(01)00049-9. |
[23] |
D. Yang, J. Wang and D. O'Regan,
On the orbital hausdorff dependence of differential equations with non-instantaneous impulses, Comptes Rendus Mathematique, 356 (2018), 150-171.
doi: 10.1016/j.crma.2018.01.001. |
[24] |
B. Zhu and L. Liu, Periodic boundary value problems for fractional semilinear integro-differential equations with non-instantaneous impulses, Boundary Value Problems, 2018.
doi: 10.1186/s13661-018-1048-1. |
show all references
References:
[1] |
R. Agarwal, S. Hristova and D. O'Regan,
Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.
doi: 10.1016/j.jfranklin.2017.02.002. |
[2] |
R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer International Publishing, 2017.
doi: 10.1007/978-3-319-66384-5. |
[3] |
L. Bai and J. J. Nieto,
Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73 (2017), 44-48.
doi: 10.1016/j.aml.2017.02.019. |
[4] |
L. Bai, J. J. Nieto and X. Wang,
Variational approach to non-instantaneous impulsive nonlinear differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2440-2448.
doi: 10.22436/jnsa.010.05.14. |
[5] |
D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66, CRC Press, 1993.
![]() ![]() |
[6] |
M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, Journal of Fixed Point Theory and Applications, 21 (2019), 21.
doi: 10.1007/s11784-019-0660-8. |
[7] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag GmbH, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[8] |
K. L. Cooke and P. Van Den Driessche,
Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260.
doi: 10.1007/s002850050051. |
[9] |
O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical & Computational Biology, Wiley, 2000. |
[10] |
S. Gao, L. Chen, J. J. Nieto and A. Torres,
Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24 (2006), 6037-6045.
doi: 10.1016/j.chaos.2006.04.061. |
[11] |
H. Guo, L. Chen and X. Song, Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control, Int. J. Biomath., 10 (2017), 1750093.
doi: 10.1142/S1793524517500930. |
[12] |
E. Hernández and D. O'Regan,
On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.
doi: 10.1090/S0002-9939-2012-11613-2. |
[13] |
J. Jiao, S. Cai and L. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Physica A: Statistical Mechanics and its Applications, 449 (2016), 145 – 159.
doi: 10.1016/j.physa.2015.10.055. |
[14] |
A. Khaliq and M. U. Rehman,
On variational methods to non-instantaneous impulsive fractional differential equation, Applied Mathematics Letters, 83 (2018), 95-102.
doi: 10.1016/j.aml.2018.03.014. |
[15] |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6, World Scientific, 1989.
doi: 10.1142/0906. |
[16] |
Y. Luo, S. Gao and S. Yan, Pulse vaccination strategy in an epidemic model with two susceptible subclasses and time delay, Appl. Math., 2 (2011), 57.
doi: 10.4236/am.2011.21007. |
[17] |
D. J. Nokes and J. Swinton,
Vaccination in pulses: a strategy for global eradication of measles and polio?, Trends Microbiol., 5 (1997), 14-19.
|
[18] |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, vol. 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
doi: 10.1142/9789812798664. |
[19] |
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2010.
doi: 10.1007/978-1-4419-7646-8. |
[20] |
R. Terzieva,
Some phenomena for non-instantaneous impulsive differential equations, Int. J. Pure Appl. Math., 119 (2018), 483-490.
|
[21] |
J. Wang, Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., 73 (2017), 157 – 162.
doi: 10.1016/j.aml.2017.04.010. |
[22] |
Y. Xiao and L. Chen,
Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.
doi: 10.1016/S0025-5564(01)00049-9. |
[23] |
D. Yang, J. Wang and D. O'Regan,
On the orbital hausdorff dependence of differential equations with non-instantaneous impulses, Comptes Rendus Mathematique, 356 (2018), 150-171.
doi: 10.1016/j.crma.2018.01.001. |
[24] |
B. Zhu and L. Liu, Periodic boundary value problems for fractional semilinear integro-differential equations with non-instantaneous impulses, Boundary Value Problems, 2018.
doi: 10.1186/s13661-018-1048-1. |


[1] |
Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084 |
[2] |
Avadhesh Kumar, Ankit Kumar, Ramesh Kumar Vats, Parveen Kumar. Approximate controllability of neutral delay integro-differential inclusion of order $ \alpha\in (1, 2) $ with non-instantaneous impulses. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021058 |
[3] |
Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77 |
[4] |
Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067 |
[5] |
Alan J. Terry. Pulse vaccination strategies in a metapopulation SIR model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 455-477. doi: 10.3934/mbe.2010.7.455 |
[6] |
Yinuo Wang, Chuandong Li, Hongjuan Wu, Hao Deng. Existence of solutions for fractional instantaneous and non-instantaneous impulsive differential equations with perturbation and Dirichlet boundary value. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1767-1776. doi: 10.3934/dcdss.2022005 |
[7] |
Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999 |
[8] |
Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 |
[9] |
Aili Wang, Yanni Xiao, Robert A. Cheke. Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2915-2940. doi: 10.3934/dcdsb.2014.19.2915 |
[10] |
Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138 |
[11] |
Muslim Malik, Anjali Rose, Anil Kumar. Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 387-407. doi: 10.3934/dcdss.2021068 |
[12] |
Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial and Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933 |
[13] |
Chandan Mahato, Gour Chandra Mahata. Optimal replenishment, pricing and preservation technology investment policies for non-instantaneous deteriorating items under two-level trade credit policy. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021123 |
[14] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[15] |
Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059 |
[16] |
Tao Feng, Zhipeng Qiu. Global analysis of a stochastic TB model with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2923-2939. doi: 10.3934/dcdsb.2018292 |
[17] |
Hongying Shu, Xiang-Sheng Wang. Global dynamics of a coupled epidemic model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1575-1585. doi: 10.3934/dcdsb.2017076 |
[18] |
Xia Wang, Shengqiang Liu, Libin Rong. Permanence and extinction of a non-autonomous HIV-1 model with time delays. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1783-1800. doi: 10.3934/dcdsb.2014.19.1783 |
[19] |
Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences & Engineering, 2016, 13 (4) : 813-840. doi: 10.3934/mbe.2016019 |
[20] |
Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]